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Abstract— In this paper, we present a communication
paradigm using a context-aware mixed reality approach for
instructing human workers when collaborating with robots.
The main objective of this approach is to utilize the physical
work environment as a canvas to communicate task-related
instructions and robot intentions in the form of visual cues.
A vision-based object tracking algorithm is used to precisely
determine the pose and state of physical objects in and around
the workspace. A projection mapping technique is used to
overlay visual cues on the tracked objects and the workspace.
Simultaneous tracking and projection onto objects enable the
system to provide just-in-time instructions for carrying out a
procedural task. Additionally, the system can also inform and
warn humans about the intentions of the robot and safety
of the workspace. We hypothesized that using this system
for executing a human-robot collaborative task will improve
the overall performance of the team and provide a positive
experience to the human partner. To test this hypothesis, we
conducted an experiment involving human subjects and com-
pared the performance (both objective and subjective) of the
presented system with conventional forms of communication,
namely printed and mobile display instructions. We found that
projecting visual cues enabled human subjects to collaborate
more effectively with the robot and resulted in higher efficiency
in completing the task.

I. INTRODUCTION

The ability to quickly understand each other’s intentions
and goals is a critical element of successful collaboration
within human teams. Efficient teaming often emerges as a
result of explicit or implicit cues that are shared, recognized,
and understood by the participants. Such cues act as signals
that maintain trust, situational awareness, and mutual under-
standing among team members. The ability to communicate
intentions through implicit and explicit cues is also of critical
importance to fluent human-robot collaboration. As high-
lighted in the Roadmap for U.S. Robotics report, “humans
must be able to read and recognize robot activities in order
to interpret the robot’s understanding” [10]. Especially in
close-contact physical interaction scenarios that are safety
critical, e.g., collaborative assembly, it is vital that the human
partner quickly understand a robot’s intentions. Failure to
establish such a shared understanding of the situation may
lead to potentially lethal accidents. Recent work towards
safer human-robot interaction has focused on the generation

1 Ramsundar Kalpagam Ganesan is with the School of Electrical,
Computer and Energy Engineering, Arizona State University.

2 Yash Rathore and Heni Ben Amor are with the School of Computing,
Informatics, and Decision Systems Engineering, Arizona State University.

3 Heather Ross is with the School for the Future of Innovation in Society,
Arizona State University, Tempe, AZ 85281, USA. Email: {ramsundar,
ykrathor, hmross1, hbenamor}@asu.edu

Fig. 1: Signaling during human-robot collaboration by projecting
dynamic, visual cues into the environment.

of legible robot motion [19], as well as the verbalization of
robot intentions using natural language [29].

In this work, we describe an alternative communication
paradigm that is based on the projection of explicit visual
cues. In particular, we propose a context-aware projection
method that embeds visual signals within the environment,
such that they can be intuitively understood and directly
read by the human partner. The physical environment is
used as a medium to convey information about the intended
actions of the robot, the safety of the work space, or task-
related instructions. To this end, a mixed reality system
has been developed that combines a vision-based object
tracking algorithm with a context-aware projection mapping
technique. Visual cues related to the robot and the task being
performed are dynamically synthesized and projected. The
projection of signals is performed in a just-in-time fashion
based on the current state within the joint collaboration plan.
An example scenario is shown in Fig. 1.

We introduce a methodology for defining an extensible
visual language that contains different categories of cues.
The methodology is based on signal categories, similar to
parts of speech in natural language, from which complex
visual messages can be constructed. Following this concep-
tualization, we propose a domain-specific visual language
that covers a reasonable fragment of visual cues related to
physical collaboration tasks. Further, we describe a set of
new interaction modes, that are enabled by the use of our
mixed-reality system and object tracking.



We hypothesize that incorporating the proposed system
into a complex, sequential human-robot collaborative task
can improve the efficiency and effectiveness of the team, and
provide satisfaction to the human co-worker in collaborating
with the robot. These gains, in turn, will improve the human-
robot team fluency and trust. To investigate the validity of
this hypothesis, we conducted a study with 15 participants in
which human subjects and a stationary manipulator jointly
assembled a car door. Throughout the collaboration, human
subjects received just-in-time visual signals related to the
task. In addition to projecting instructions and information,
the system also provided visual feedback on the effectiveness
of the task currently being carried out by the human. The re-
sults of the experiments were evaluated using a mixed meth-
ods approach including quantitative and qualitative criteria
to assess accuracy, efficiency, and participant satisfaction.

II. RELATED WORK

Advances in display systems and vision technology have
paved the way for incorporating real-time augmented infor-
mation with physical entities. In robotics, various techniques
for visually signaling commands and intentions have been
proposed in the past. An early review of the use of AR for
human-robot collaboration can be found in [15]. Common
to many setups [17], [22], [13], [18], however, is that they
display additional information by projecting onto flat sur-
faces in the environment, e.g., the floor. The surface becomes
a replacement for the flat display screen. One of the early
attempts to use projections to communicate with the robot
was made by [26]. The prototype of their system, “Interactive
Hand Pointer” (IHP), consisted of a LCD projector and a
real-time vision algorithm to detect and track user hand
gestures.

Related research studies have focused on providing a
visual platform for human users to directly interact and
understand the internal states of robots. [30] presented an
approach to communicate navigational intentions using a
projector mounted on a robotic wheelchair. The robotic
wheelchair projected its future trajectory on the floor, which
helped both the passenger and nearby people to navigate
safely. The motion of other individuals passing by the
wheelchair was significantly smoother with projected inten-
tion communication.

In a similar approach, [8] reported that using on-floor
projection to visualize the intended path of a mobile robot
enhanced human reaction and comfort working in a robotic
environment. The subjective experiment showed that the
average user rating with the projection system increased by
53% and 65% respectively for the robot moving in straight
lines and for taking a sudden turn. Both studies suggest that
humans find it more comfortable to interact and work with
a robot when its intentions are presented directly as visual
cues.

[22] demonstrated an advanced projection system, MAR-
CPS, which augmented the physical laboratory space with
real-time status and intentions of drones and ground vehi-
cles in a cyber-physical system. Several other studies have

also used projection systems to convey information to the
user [27], [17]. However, these systems were confined to
displaying on flat surfaces and did not consider the state of
physical objects while projecting information.

In contrast to that, our earlier work [1] demonstrated an
early prototype of a projection system that tracks physical
objects in real-time and projects visual cues at specific spatial
locations. A preliminary usability study demonstrated im-
proved effectiveness and user satisfaction with the projection-
based approach in a human-robot collaborative task. How-
ever, the proposed system at the time was limited to simple
tasks like tracking, moving and rotating a single object on
a flat surface and the overall collaboration was limited to
an interaction of about 1-2 minutes. In contrast to that, we
present in this paper an extensible visual language with 18
dynamic visual cues, which supports complex collaborations
over longer periods of time in a systematic way. The ex-
tensible language features basic, task-agnostic cues that are
applicable to many domains. We demonstrate the validity
on an extended procedural task consisting of 12 subtasks
and which is copied from a real-world automotive assembly
procedure.

Besides projection-based methods, there has been substan-
tial work on visualizing robot intent using head-mounted
displays (HMD) and stereoscopic glasses. Pioneering work
on this topic was conducted by Milgram and colleagues
[20]. Today, modern HMD technology such as the Microsoft
Hololens or Oculus Rift is used for these purposes. In [23],
a system is presented that visualizes upcoming robot arm
movements in AR. In a similar vein, the work in [24] uses a
proprietary HMD technology to visualize robot actions in a
manufacturing task. However, HMDs are typically bulky and
ergonomically uncomfortable when used over long periods of
time [2]. In additon, they require all participants in a collab-
orative task to wear a physical device at all times – a cost-
intensive and technologically challenging requirement that
involves synchronization among multiple devices. A low-cost
and efficient approach is to use LED lights to identify the
intentions of the robot [28], [4], [3]. While this simplifies
the necessary technical setup needed to provide visual cues
to a human partner, i.e., no expensive HMD required, it also
significantly reduces the range of information that can be
conveyed.

In this paper, we describe a novel system that is capable
of tracking and projecting information on multiple objects
in three dimensions simultaneously. We also present a rich
visual language that goes beyond the display of trajectories
or distances and allows for complex signaling.

III. VISUAL SIGNALING FRAMEWORK

In this section, we describe our visual communication
paradigm in detail. We convey information to a human
interaction partner during a human-robot collaboration task
using mixed reality cues projected onto moving objects in the
environment. This approach ensures that the information is
communicated (a) at the right time and (b) at the right spatial
location. Note that our current approach assumes information



about the environment. In particular, we assume that all
objects involved in the collaboration task are available as
3D CAD models.

A. Object Tracking
Our presented system uses vision-based 3D object tracking

to estimate the 6-DOF pose of objects in the environment. To
this end, we use a model-based tracking algorithm inspired
by [9] to estimate the pose of objects in real-time. The
tracker uses polygonal mesh features from 3D CAD model
to estimate the pose of a desired object. Instead of using
only single low-level hypothesis for pose estimation, we
handle multiple low-level hypotheses simultaneously. This
enhanced approach enables robust tracking of objects even
when projections are overlaid on objects. An occlusion-aware
computer vision method, along with Kalman filtering is used
to deal with occlusions caused by human partners. Occluded
areas of an object can automatically be identified using
machine learning. A detailed description of the occlusion-
detection algorithm is outside the scope of this paper and
can be found in our previous work [7].

(a) Sample points (green) and er-
rors (colored lines)

(b) Estimated pose of the object

Fig. 2: Edge-based object tracking

First, an input image is captured from a monocular RGB
camera and edges are extracted using the Canny edge de-
tector. The 3D CAD model is projected onto the image
and nearby Canny edges are determined using a 1-D search
along the normal direction of the projected edge. Euclidean
distances between sample points and their corresponding
nearest edge are computed and combined together to form
the distance error vector. The errors (colored lines) corre-
sponding to the sample points (green) are shown in Fig. 2a.
The pose of an object is estimated by minimizing the distance
error by Iterative Re-weighted Least Square (IRLS). Fig. 2b
shows the estimated pose of the object being tracked. The
following section explains the mathematical model of the
multiple hypotheses object tracking system, followed by
evaluation of the tracker.

1) Mathematical Model of Pose Estimation: We formulate
our mathematical model using the inter-frame motion. The
object pose Et+1 at time t + 1 can be estimated from the
prior pose Et using the inter-frame motion M .

Et+1 = Et M (1)

Motion M , in turn, can be represented using exponential
map as shown below.

M = exp(µ) (2)
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Fig. 3: Experimental setup for measuring the accuracy of the object
tracker

Where µ ∈ R6 represents the motion velocities of 6-DOF
displacement of the tracked object.

The motion M can be estimated by minimizing the error
between the prior pose Et and current pose Et+1. First, the
3D CAD model of the object is projected onto the Canny
edge image using prior pose Et and points are sampled along
the projected edges. Next, the edges corresponding to sample
points on the projected 2D edges are determined using a 1-D
search from each sample point along the normal direction of
the projected edge. For each sample point pi, the Euclidean
distances to all the edge correspondents p′ij are computed
and stacked to form a distance error vector e. Finally the
pose is estimated by minimizing the error e using Iterative
Re-weight Least Square (IRLS) and M estimator.

µ̂ = arg min
µ

N∑
i=1

‖ei‖ (3)

µ̂ = arg min
µ

N∑
i=1

min

(∥∥∥pi − p′ij∥∥∥) (4)

Where µ̂ ∈ R6 is the estimated pose of the object in
current frame, obtained by minimizing the distance error
corresponding to N sample points. During each iteration of
optimization process, only one hypothesis corresponding to
each sample point that results in minimum error is taken into
account.2) Evaluation of Single versus Multiple Hypotheses Ap-
proach: Using multiple low-level hypotheses for estimating
the pose resulted in more robust tracking than using single
hypothesis. To test this, we conducted an experiment to
quantitatively measure the accuracy of the object tracker
using single and multiple hypotheses approaches. Fiducial
markers were employed to measure the ground truth pose
of the object. The experimental setup is shown in Fig. 3.
The ground truth transformation of the object T ′O can be
calculated as shown in equation 5.

T ′O = TM TE (5)

Where TM is the transformation between the camera and
the marker, and TE is the transformation between the marker
and the object. TM is obtained by tracking the marker, while
TE is manually measured and remains constant throughout
the experiment.



TABLE I: Root Mean Square (RMS) errors of the tracked objects

Objects Translational Errors in meters Rotational Errors in degrees
x y z roll pitch yaw

Box SHT 0.00436 0.00341 0.03141 5.33171 3.23881 1.37898
MHT 0.00184 0.00288 0.02018 1.87967 1.74491 1.00182

Car door SHT 0.08636 0.01508 0.11473 24.90995 14.13488 40.69923
MHT 0.05024 0.01006 0.05210 9.14722 5.28910 9.29414

Toolbox SHT 0.00850 0.00448 0.01239 2.00256 0.64617 1.58144
MHT 0.00877 0.00462 0.00956 1.61309 0.59072 1.31593

Circular SHT 0.00445 0.00306 0.03935 3.21225 4.41108 2.17598
Object MHT 0.00286 0.00171 0.00929 1.58369 0.78398 0.77677

Fig. 4: 6-DOF pose plots of the box object showing the measured translation and rotation values using Single Hypothesis Tracking (SHT)
and Multiple Hypothesis Tracking (MHT). Ground truth is also shown for comparison.

The experiment was conducted with four different objects:
box, car door, toolbox and circular object. The objects were
tracked using the single hypothesis and multiple hypotheses
approaches. The 6-DOF pose data of the box measured
form the experiment is shown in Fig. 4. The data in the
Table I shows the Root Mean Square (RMS) errors of the
tracked values in both approaches. It is evident from the
Table I that multiple hypotheses tracking outperforms the
single hypothesis tracking in terms of accuracy in all cases
except for x and y translations of toolbox object.

It was observed from the experiment that using single
hypothesis resulted in loss of tracking when there was
significant occlusion, while considering multiple hypotheses
enhanced the accuracy, as seen in Fig. 4 (Frame number
490–600).

B. Projection Mapping System

Given the 3D pose, we can perform projection mapping
in order to display additional information on top of an
object while taking into account the geometric structure.
Using a projection device, the visual cues are projected into

the environment in order to rapidly communicate important
aspects of the tasks. The pose and shape of objects from
the tracker are incorporated into the generation of visual
cues, which enables the system to display only on objects-
of-interest.

Since rendering of visualizations is performed within the
reference frame of the projector, transforming the tracked
object pose from the camera to projector frame of refer-
ence is required. To this end, projector-camera calibration
is performed between the two reference frames [21]. Our
system setup consists of a low-cost, monocular RGB camera
(Logitech C920 Pro Webcam) which is rigidly attached to a
LCD projector and pointed in direction of the scene. All
algorithms are implemented in C++ and run on a single
desktop PC. Our system can simultaneously track, render,
and project on multiple objects in real-time at a frame rate
of 20–30 Hz.

C. Extensible Visual Language

In this section, we introduce a conceptualization for dy-
namic visual messaging using projected mixed-reality cues.



In particular, we propose an extensible visual language to ex-
plicitly convey information to a human collaborator through
visual signals. A set of patterns, analogous to parts of
speech, are used to form a visual language from which visual
messages can be formed. The language includes a reasonable
fragment of patterns for human-robot interaction tasks, but
can be further extended according to the application domain.
Since the visual processing system in humans is very fast,
visual messages can rapidly be processed without additional
cognitive effort.

The basic fragment of visual cues proposed here in-
cludes patterns for designating and targeting objects (sub-
stantives), indicating positions, relations, and orientations
(prepositions), basic movement instructions (verbs), success
and failure (affirmation), hazards and visualizing the robot
work area, as can be seen in Table II. Basic cues can be
composed to generate a sequence of instructions or a visual
equivalent of a phrase. These, in turn, are translated into
a visual message by generating appropriate mixed-reality
signals.

TABLE II: Subset of Proposed Visual Cues

Substantives highlight object(X)
highlight object part(X,Y)

Verbs move to(X,Y)
remove(X)
join(X,Y)
align(X,Y)

Prepositions in front of(X)
left of(X)
right of(X)
at position(X,Y)
relative to(X,Y,Z)

Affirmation success()
failure()

Safety and Hazard stop(X)
caution(X)
robot workarea()

Text text(X)
text flash(X)

D. Visual Plan Signaling

Given the conceptualization of an extensible visual lan-
guage in Sec. III-C, we demonstrate a domain-specific visual
language for collaborative manufacturing tasks, such as a
human and a robot jointly performing manipulations on a
car door prototype. This is an example of a generic language
applied to a specific domain.

Fig. 5 shows a collection of visual cues and interaction
metaphors that can be used to signal the state of the collab-
oration, next tasks, etc. For example, the robot can (a) project
the boundaries of its work area, (b) communicate information
about the success of the current subtask, (c) highlight specific
objects, or (d) highlight a particular object part. Similarly,
the user may be instructed to (e) move the object to a
specified location. In this case, a slider metaphor is used
in order to dynamically indicate the remaining amount of
translation needed. The robot may also (f) indicate a safe
position for the human partner or instruct the user to (g)
join specific components. Finally, as can be seen in (h), the

mixed-reality approach also allows us to visualize hidden
objects, e.g., the contents of a box. This is particularly helpful
in domains where information about content can be derived
from bar codes or other types of input that are not human-
readable. In our implementation, all visual cues are generated
through a procedural approach: specific patterns are produced
in real-time by modifying the available 3D CAD model,
e.g., coloring the model, or overlaying textures. Hence, the
approach can easily be applied to different environments and
object sets as long as the corresponding 3D models are avail-
able. This is, however, typically the case in manufacturing
environments. We used an open source 3D creation suite,
Blender, for creating the 3D CAD models and developing
the visual elements.

The above signals can, in turn, be chained into sequences
and incorporated into a robot plan. This can be implemented
as follows:
• highlight(CARDOOR)

• move(CARDOOR, right of(ROBOT))

• align(CARDOOR, relative to(ROBOT, [1.2m,

0.3m], -35°))

In the above example, the human is instructed to move the
car door to a location near the robot, see Fig. 5e. The distance
to the goal position is projected onto the work floor, which
provides real-time feedback to the human. Finally, the system
projects the current (green) and desired (white) position and
orientation of the car door, as shown in Fig. 6. As the human
tries to align the car door, the current position and orientation
are displayed in real-time as a circle and a line.

IV. EXPERIMENTAL OBJECTIVE

A human subject experiment was conducted to compare
the performance and usability of the proposed system using
real-time projected cues in the workspace with a conventional
method using static printed instructions. The aim of the
experiment was to collect objective and subjective measure-
ments from human subjects to analyze and evaluate the
efficiency, effectiveness and satisfaction of collaborating with
a robot teammate.

A. Independent Variables

In our experiment, we manipulated a single independent
variable, mode of communication, which can have one of the
three values:

1) Printed mode – The subjects were provided with a
printed set of instructions in the form of written
descriptions and corresponding figures. The printed
instructions were pasted on a wall adjacent to the
workspace and were available to the subject throughout
the experiment.

2) Mobile display mode – The subjects were provided
with a tablet device consisting of instructions in the
form of texts, figures, animations and videos. The
device was free to be carried around while executing
the task. Instructions were provided just-in-time via
“forward” and “backward” buttons that allowed users
to move to the next or previous tasks.



(a) Robot work area (b) Success (c) Highlight object (d) Highlight object part

(e) Move to (f) Partner at location (g) Join parts (h) Display contents

Fig. 5: A set of visual cues used to signal states of the human-robot interaction, next tasks, actions, intentions, or hidden objects during
collaborative manufacturing.

(a) (b) (c)

Fig. 6: Sample use case - aligning a car door

3) Projection mode – The subject was provided with just-
in-time instructions by augmenting (using projection
mapping) the work environment with mixed reality
cues.

Each participant was required to collaborate with the robot
thrice (printed, mobile display and projection modes) in
carrying out a procedural assembly task. The experiment
used a within-subject comparison design, which enabled the
participants to compare and provide subjective measures for
the three methodologies. The order of conditions was varied
and the order of subtasks per test condition was partially
randomized on a per-subject basis to eliminate order effects.

B. Hypotheses

H1.1 Efficiency of a human-robot collaborative team
will be greater when the human subjects are provided with

just-in-time instructions in the form of augmented visual
cues as opposed to instructions printed on a paper or
displayed using mobile device.
H1.2 Effectiveness of a human-robot team in
accomplishing a collaborative task will be higher when the
human subjects receive visual feedback as they perform and
complete tasks rather than having no feedback.
Communicating information and instructions visually and
in the right place at the right time is faster, intuitive, and
improves overall task performance. In contrast, instructions
displayed on a mobile device or in the form of printed texts
might arise ambiguities in a real-time task situation. We
defined efficiency as the time taken for the human subjects
to complete the task and effectiveness as the accuracy
percentage of task completion.
H2 Time taken by each human subject to understand a
specific task will be constant when the instructions are in
the form of just-in-time visual cues. In contrast, there will
be high variation in understanding times between human
subjects when the instructions are printed on a paper or
displayed on a mobile device.
We anticipate that clear and concise information in
augmented visual form requires more or less the same time
to understand by different human subjects. We also expect
to see large variations in task understanding times between
subjects in printed condition. To test this hypothesis,
we measured the time taken for each subject to read or
interpret a subtask in each task condition and compared the
measurements.
H3 Subjects will be more satisfied collaborating with
the robot in projection mode than the other two modes.



Additionally, explicit visual feedback will instill a positive
attitude in human subjects. In contrast, subjects will feel
negative or neutral when they receive no explicit feedback
from the system or robot.
It is important to provide the human subjects with feedback
of the robot’s intention and the subject’s action. This, in turn,
ensures that the human collaborator will feel comfortable
and satisfied working with the robot. In order to obtain
the subjective measurements, human subjects completed a
post-test questionnaire consisting of a series of Likert scale
and free response questions.

V. EXPERIMENTAL METHODS

We asked subjects to collaborate with a robot to carry
out a well-specified assembly task in a simulated man-
ufacturing environment. The joint assembly task involved
a human subject and a stationary manipulator with six
degrees of freedom (UR5 robot) performing a total of 12
manipulation steps on a car door. The assembly process
required removing new components and tools from a set of
toolboxes, connecting components in a specific order, and
finally attaching them at different locations on the door.
The car door was placed on a caster and could be moved
to different locations. All experiments were reviewed and
approved by the Institutional Review Board (IRB) at Arizona
State University. A video demonstrating our experiment can
be found at https://youtu.be/CVY1JngYVAQ.

A. Experiment Procedure

First, the participants were briefed on the experiment
and the assembly task scenario. Participants were informed
that they must collaborate with the robot in completing a
procedural task consisting of 12 subtasks that must be com-
pleted successfully in sequence so that failing to complete
one subtask would result in failing one or more subsequent
subtasks. Nine of the 12 subtasks were assigned to the
participant while the rest were assigned to the robot. The
order of the subtasks was partially randomized in all three
conditions (printed, mobile display and projection mode).
Each participant carried out a total of three task trials under
each condition. All participants were required to read and
sign a consent form before beginning the experiment.

B. Experiment Task

The goal of the experimental task was to assist the robot
in assembling a car door in a simulated manufacturing envi-
ronment. The task involved carrying out a set of sequential
subtasks τ = {τ1, τ2, . . . , τ12}, in a specified order. A
subtask τi could be any one of the following:
• Pick an assembly part (interchangeable part) or tool
• Place an assembly part or tool
• Move car door to specified location inside the

workspace
• Align car door with specified reference point
• Join assembly parts together
• Screw assembly parts on the car door

The instructions to execute the subtasks were framed as
sequential steps and were provided to the participants as
printed, mobile display, or projected instructions, depending
on the test condition. The instructions also specified whether
the subtask was to be completed by the human or the robot.

C. Measurement Instruments

The entire experiment was videotaped for post-hoc anal-
ysis. Efficiency and effectiveness were evaluated objectively
by measuring the completion time and accuracy of each
subtask. Subtask completion time, for both human and robot,
was measured by recording the difference in time between
start and end of the subtask. For a human subject, the subtask
completion time was expressed as the total time spent on
understanding the instructions and then executing it.

The percentage of task completion (fraction of success-
fully completed subtasks) was used as a measure to evaluate
the effectiveness of the collaborative task. Additionally, ac-
curacy of completing certain subtasks (e.g. aligning car door
with a point on floor) was also measured by computing the
ground truth error.

After each task trial, participants were given a post-task
questionnaire consisting of seventeen 7-point Likert scale
items and at the end of all the trials two free response
questions, as shown in Table III. The questionnaire was
designed to measure composite subjective metrics: human-
robot fluency, safety and trust in robot, task execution and
task load. Questionnaire items were inspired and adopted
from works by [16], [14] and [11]. A few questions spe-
cific to the experiment (Questions 7-17) were added to the
questionnaire.

VI. RESULTS

In this section, we analyze and discuss our quantitative
(objective and subjective) and qualitative (subjective) find-
ings from the human-robot collaborative experiment. We also
report statistically significant findings from our experiment.
We used a significance level of α = .05 for all statistical
tests.

A. Participants

A total of 15 participants (aged 21–48, M = 25.86, SD =
6.42) consisting of undergraduate and graduate engineering
students at a large urban research university were included in
the study. All participants were recruited from the university
campus via email and word-of-mouth. Of the 15 participants,
5 reported having prior experience directly interacting with
a robot. Only 5 participants were native English speakers,
however, all participants indicated fluency in the English
language. Within-subjects design of the experiment enabled
the participants to compare between the three modes of
communication. To control for the learning effect, partici-
pants were told that the three task trials had different sets
of subtasks, even though only the order of the subtasks
was randomized. To eliminate order effects, the order of
the modes (Printed, Mobile display and Projected) was also
randomized for different groups of participants.

https://youtu.be/CVY1JngYVAQ


TABLE III: Subjective Measures – Post-task Questionnaire

Human-Robot fluency
1. The human-robot team worked fluently together.*
2. The robot contributed to the fluency of the interaction.*
Safety and Trust in Robot
3. I felt uncomfortable with the robot. (reverse scale)**
4. I was confident the robot will not hit me as it is moving.**
5. I felt safe working next to the robot.**
6. I trusted the robot to do the right thing at the right time.**
7. I was able to clearly understand robot’s intentions and actions.*
Task execution
8. How satisfied you feel about executing the whole task?*
9. I was comfortable in interpreting the instructions. The instructions
were clear and easy to understand.*
10. I feel that I accomplished the task successfully.*
11. I was able to assist the robot in completing its task successfully.*
12. The robot/system provided me with necessary feedback in order to
complete the task.*
13. I would work with the robot the next time the tasks were to be
completed.*
14. How was your attitude towards the task while you were performing
it?*
Task load
15. The task was mentally demanding (e.g., thinking, deciding, remem-
bering, looking, searching, etc.).***
16. The task was physically demanding. I had to put a lot of physical
effort to complete the task.**
17. I never felt discouraged, irritated, stressed or frustrated at any point
of time during the task execution.*
Free response questions
18. Which form of instruction (Printed or Mobile display or Projected)
will you prefer if you were to collaborate with the robot on a similar
task and why?
19. Explain your overall experience working on the collaborative task
in all the three scenarios (Printed, Mobile display and Projected).

Note: Statistical significance found using one-way ANOVA test. *p < .05
favoring the projected condition, **p = NS and ***p < .05 favoring the
printed and mobile display condition as more mentally demanding.

B. Objective Findings

1) Efficiency: Hypothesis H1.1 states that the efficiency
of the human-robot collaborative team will be higher in
the case of the projected condition when compared to the
printed and mobile display condition. Total time taken for
completing all the subtasks was measured and compared
between the three conditions. On comparing the measured
values from printed mode and mobile display mode with the
projection mode, total task completion time was found to be
lower in the projection case. Fig. 7a illustrates the average
task completion time in all the three test conditions.

(a) (b)

Fig. 7: Mean and standard error for (a) task completion time and
(b) percentage of task completion.

An analysis of variance, using the one-way ANOVA test,

showed statistically significant differences in total task com-
pletion times among the different task conditions, F (2, 42) =
8.07, p < 0.01. Task completion time in the projected
condition (M = 467.73, SD = 135.22) was lower than the
time in the printed condition (M = 678.60, SD = 165.60),
t(14) = 8.02, p < 0.00001 and mobile display condition (M
= 606.53, SD = 135.59) , t(14) = 6.31, p < 0.0001.

The statistically significant results reinforce our hypothesis
that human-robot teams are more efficient with just-in-
time projected instructions than with printed or displayed
instructions.

2) Effectiveness: We assessed the effectiveness of the task
in the three test conditions by considering the percentage
and accuracy of task completion in each test scenario. The
percentage of task completion by the human-robot team
was computed as the fraction of successfully completed
subtasks out of all given subtasks. We compared the three
conditions using a one-way ANOVA test and found statistical
differences in the task completion percentage as a function
of the mode of communication, F (2, 42) = 7.26, p < 0.01.
It can be seen from Fig. 7b that the average task completion
percentage is significantly higher in the projected condition
than the printed and mobile display conditions.

As a measure of accuracy, we recorded the ground truth
errors for subtasks involving the alignment of the car door
and objects in both task conditions. Our experiment in-
cluded four error-measurable subtasks – three times the
car door alignment and one circular object alignment –
which involved measuring translation and rotation errors.
Both translation and rotation errors were comparably smaller
in the projected condition when compared to printed and
mobile display condition. Analysis of variance using one-
way ANOVA on the translation errors show that there is sta-
tistically significant difference between the three conditions.

In comparison, a one-way ANOVA test on the rotation
errors revealed that all the tasks except car door alignment
3 showed a significant difference between conditions, as
illustrated in Fig. 8. This is acceptable because, the subtask 3
involved rotating and aligning the car door parallel (0◦) to the
robot, which is relatively easier to accomplish even without
feedback when compared to other subtasks that involved
rotating car door to a specified angle.

Fig. 8: Mean and standard errors of rotation errors.



3) Task Understanding Time: In hypothesis H2, we postu-
lated that the time taken by different subjects to understand
a subtask will be constant if the instructions are provided
in augmented visual form. To investigate the hypothesis,
we measured the understanding times of the subject for 9
subtasks that were assigned to participants and analyzed the
standard errors of means. Task understanding time is defined
as the time spent by the participant in reading or looking at
instructions.

We observed that the standard errors for all subtasks in
the projected condition were significantly lower than in the
printed and mobile display condition, implying that most
participants took a similar amount of time to understand a
subtask. In contrast, standard errors in the printed and mobile
display condition were comparatively higher, particularly for
subtasks 4, 8, and 9, as shown in Fig. 9.

Fig. 9: Mean and standard error for task understanding time.

C. Subjective Findings

Our analysis of subjective findings was based on responses
to Likert-scale and open-ended questions included in the
survey. We analyzed open-ended questions using a modified
Grounded Theory and content analysis approach (see [6]).

1) Questionnaire Items: We compared participant ratings
for each questionnaire item between test conditions (printed
vs. mobile display vs. projected) using one-way ANOVA,
as shown in Table III. A post-hoc t-test using a Bonfer-
roni correction of α

3
was carried out to compare mobile

the display vs. projected condition. Subjective responses
significantly favored the projected condition with regard
to human-robot fluency, clarity, and feedback. The t-test
using Bonferroni correction supports the hypothesis that
fluency is improved during the projected condition (Q1,
p = 0.0025; Q2, p = 0.0035). Participants significantly
favored projected and mobile display conditions compared
to printed conditions for task execution, human-robot col-
laboration, and attitude. However, there was no statistically
significant difference between scores for the projected and
mobile display conditions for these items (Q8, p = 0.13;
Q11, p = 0.15).

Hypothesis H3 also states that explicit visual feedback will
instill a positive attitude in participants, and that participants
will feel negative or neutral when they receive no explicit
feedback from the system or robot (i.e. in the printed
condition). Subjective responses supported this hypothesis to
some degree with the median central tendency for Q14 (How

was your attitude to the task while you were performing it?)
being 6 (“positive”) for the projected case and mobile display
case, compared to 4 (“neutral”) for the printed case. There
was not a significant difference between attitude scores for
the projected and mobile cases.

2) Qualitative Free Response Data: All participants fa-
vored the projected condition over printed and mobile con-
ditions. Major themes included user perceptions of their own
ability (e.g. ease of performing task, ability to complete
task accurately), user perceptions of robot system perfor-
mance (e.g. clarity of instructions, provision of feedback,
intuitiveness of the overall process, system oversight of the
task series), human-robot interaction experience (including
perceived safety), and overall attitude toward task condition.

Overall, free response comments were overwhelmingly
positive for the projected instructions condition in contrast
to more negative responses for the printed instructions con-
dition. Responses for the mobile condition were positive,
but all respondents indicated an overall preference for the
projected condition. Several respondents noted that the pro-
jection system felt game-like, whereas the printed system
felt like work. Respondents felt that the projection system
was more intuitive, leading to more fluid and accurate task
performance in contrast to the printed task, which required
frequent reference to the instructions that were not always
intuitive, and frequently hampered by human imprecision
in the manual measuring elements of the task. Participants
perceived that the projected condition yielded better accuracy
with improved efficiency compared to the printed condition.
However, one participant noted that in a manufacturing
environment with compartmentalized worker task repetition,
a worker presented with printed task instructions would most
likely become fluent with the task after a few repetitions, so
that the printed approach would ultimately be more efficient
than the projected instruction approach. A few participants
noted that the demonstration videos in the mobile condition
were helpful to improve task accuracy. Several participants
referred to the human-robot interaction as a team, and most
participants felt that the human robot interaction was safe.
Participants noted that it was a positive feature that the
robotic system kept track of overall task progress in the
projection system, rather than relying on human oversight.

VII. LIMITATIONS

Despite the demonstrated advantages of the proposed sys-
tem, there are various limitations worth noting. The system
does not take into account the human position or movements
which could be of critical importance to improve the re-
sponsiveness and safety. The positions of both the projector
and the camera are stationary and the human partner is
occasionally seen blocking both tracking and projection. In
practice, this did not affect the performance in a significant
manner, but a setup using multiple cameras and projectors
is possible to circumvent this issue. Regarding the above
experimental design, there may be additional factors that
could be incorporated. In particular, just-in-time signaling
is at the moment only used for the projected and mobile



mode. By analyzing both an (1) just-in-time and (2) an all-
at-once mode, deeper insights into influence of timing could
be gained. The current design does not disambiguate between
the two modes. Further, both the printed and projected mode
were hands-free while in the mobile mode a device was
carried. Since the used mobile-device was only marginally
larger than a cell phone, users were mostly unobstructured
during the task. However, in future work we would like to
analyze the influence of carrying a device on task perfor-
mance. Also, while we used a Grounded Theory approach
in this paper, it would be worthwhile to create and validate
a scale with established reliability. However, that would
requirer multiple rounds of prospective testing, and is outside
of the scope of this paper. Finally, there is likely bias in
the thematic content of qualitative free responses due to
conceptual priming effect [5] from administering subjective
Likert scale questions on same printed form immediately
before soliciting free response data.

VIII. CONCLUSION

In this paper, we proposed a methodology for visual
signaling during human-robot collaboration and evaluated
its suitability in a manufacturing domain. We introduced a
mixed reality system that combines a vision-based object
tracking algorithm with a context-aware projection mapping
technique to communicate with human user. We introduced
a conceptualization for visual languages based on signal
categories, similar to parts of speech in natural language and
also demonstrated the domain specific example.

A user study was performed to evaluate the introduced
methodology. The objective evaluation using the task com-
pletion time and accuracy measurements corroborated our
hypotheses H1.1 & H1.2 that using our mixed reality system
would increase the efficiency and effectiveness of a human-
robot team. Participants took less time to complete the task
when following projected visual instructions. Our analysis
also confirmed that visual instructions were intuitive and
took approximately the same amount of time for different
participants to understand, supporting our hypothesis H2.

Subjective findings from structured and free response
questions supported our hypothesis that participants would
experience higher satisfaction with the projected mode when
compared to the printed or mobile display mode.Participants
responded favorably to feedback and found the projected case
to be enjoyable. Notably, multiple participants referred to
the human-robot collaboration as a team, reflecting the term
offered by the experimental instructions and suggesting the
opportunity to explore development of qualities characteriz-
ing high-functioning teams, such as trust, in the human-robot
interaction. In addition, several participants mentioned that
the projected case had a game-like quality. This observation
suggests the opportunity to explore further integration of
game design concepts [25] to enhance the human experience
and task performance.

In light of our relatively homogeneous participant co-
hort consisting of undergraduate and graduate engineering
students at a large urban research university, we cannot

generalize our findings to a broad user group. Therefore,
we plan further testing with additional participant groups,
including non-engineers, individuals with prior line manu-
facturing experience, and individuals representing a broader
age range. Future plans also include usage of think-aloud
protocol [12] to better understand subjects’ real-time per-
ceptions of interacting with the robot.

REFERENCES

[1] Rasmus Skovgaard Andersen, Ole Madsen, Thomas B Moeslund, and
Heni Ben Amor. Projecting robot intentions into human environments.
In Ro-man 2016-Proceedings of the 25th Ieee International Symposium
on Robot and Human Interactive Communication, 2016.

[2] Ronald Arkin and Thomas Collins. Skills impact study for tactical
mobile robot operational units, 2005.

[3] K. Baraka, S. Rosenthal, and M. Veloso. Enhancing human under-
standing of a mobile robot’s state and actions using expressive lights.
In 2016 25th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), pages 652–657, Aug 2016.

[4] Kim Baraka, Ana Paiva, and Manuela Veloso. Expressive Lights
for Revealing Mobile Service Robot State, pages 107–119. Springer
International Publishing, Cham, 2016.

[5] John A Bargh, Mark Chen, and Laura Burrows. Automaticity of social
behavior: Direct effects of trait construct and stereotype activation on
action. Journal of Personality and Social Psychology, 71(2):230–244,
1996.

[6] H Russell Bernard. Research methods in anthropology: Qualitative
and quantitative approaches. Rowman & Littlefield, 2017.

[7] S. Brahmbhatt, H. Ben Amor, and H. Christensen. Occlusion-Aware
Object Localization, Segmentation and Pose Estimation. ArXiv e-
prints, July 2015.

[8] Ravi Teja Chadalavada, Henrik Andreasson, Robert Krug, and Achim J
Lilienthal. That’s on my mind! robot to human intention communi-
cation through on-board projection on shared floor space. In Mobile
Robots (ECMR), 2015 European Conference on, pages 1–6. IEEE,
2015.

[9] Changhyun Choi and Henrik I Christensen. Real-time 3d model-based
tracking using edge and keypoint features for robotic manipulation. In
Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 4048–4055. IEEE, 2010.

[10] Henrik I Christensen, T Batzinger, K Bekris, K Bohringer, J Bordogna,
G Bradski, O Brock, J Burnstein, T Fuhlbrigge, R Eastman, et al. A
roadmap for us robotics: from internet to robotics. Computing Com-
munity Consortium and Computing Research Association, Washington
DC (US), 2009.

[11] Anca D Dragan, Shira Bauman, Jodi Forlizzi, and Siddhartha S
Srinivasa. Effects of robot motion on human-robot collaboration. In
Proceedings of the Tenth Annual ACM/IEEE International Conference
on Human-Robot Interaction, pages 51–58. ACM, 2015.

[12] K Anders Ericsson and Herbert A Simon. Verbal reports as data.
Psychological review, 87(3):215, 1980.

[13] Fabrizio Ghiringhelli, Jerome Guzzi, Gianni A Di Caro, Vincenzo
Caglioti, Luca M Gambardella, and Alessandro Giusti. Interactive aug-
mented reality for understanding and analyzing multi-robot systems.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1195–1201. IEEE, 2014.

[14] Matthew C Gombolay, Reymundo A Gutierrez, Shanelle G Clarke,
Giancarlo F Sturla, and Julie A Shah. Decision-making authority,
team efficiency and human worker satisfaction in mixed human–robot
teams. Autonomous Robots, 39(3):293–312, 2015.

[15] S. A. Green, M. Billinghurst, X. Chen, and G. J. Chase. Human-robot
collaboration: A literature review and augmented reality approach in
design. International Journal of Advanced Robotic Systems, 5(1):1–18,
2008.

[16] Guy Hoffman. Evaluating fluency in human-robot collaboration. In
International conference on human-robot interaction (HRI), workshop
on human robot collaboration, volume 381, pages 1–8, 2013.

[17] Kentaro Ishii, Shengdong Zhao, Masahiko Inami, Takeo Igarashi, and
Michita Imai. Designing laser gesture interface for robot control. In
IFIP Conference on Human-Computer Interaction, pages 479–492.
Springer, 2009.



[18] Florian Leutert, Christian Herrmann, and Klaus Schilling. A spatial
augmented reality system for intuitive display of robotic data. In Pro-
ceedings of the 8th ACM/IEEE international conference on Human-
robot interaction, pages 179–180. IEEE Press, 2013.

[19] Jim Mainprice, E Akin Sisbot, Thierry Siméon, and Rachid Alami.
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