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Abstract: This paper introduces a fully Bayesian reformulation of Interaction
Primitives for human-robot interaction and collaboration. A key insight is that
a subset of human-robot interaction is conceptually related to simultaneous lo-
calization and mapping techniques. Leveraging this insight we can significantly
increase the accuracy of temporal estimation and inferred trajectories while simul-
taneously reducing the associated computational complexity. We show that this
enables more complex human-robot interaction scenarios involving more degrees
of freedom.
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1 Introduction

Programming collaborative robots to assist a human partner is a notoriously difficult challenge. The
traditional programming paradigm requires a human engineer to foresee all important task param-
eters, and implement control routines that allow the robot to determine when and how to engage in
the interaction. Unfortunately, even for moderately complex human-robot interaction scenarios this
approach becomes intractable, since it involves many possible combinations of states and actions.
To overcome this challenge, data-driven approaches for imitation learning in dyadic settings have
recently been proposed. Recorded human-human or human-robot demonstrations are leveraged to
train machine learning models of the observed dynamics of the interaction. In turn, these models
can be used by a robot, at runtime, to engage in similar interactions with a human partner.

A prominent approach to modeling such coupled behavior from example demonstrations has been
proposed in [1]. More specifically, the Interaction Primitives method learns probability distributions
over joint actions between two interaction partners. Bayesian inference can thereafter be used to
generate robot actions, as a function of observed human behavior. A prerequisite for that operation,
however, is the identification of the current phase (i.e., time step) within the collaborative task. In
Interaction Primitives and related methods, this is solved using Dynamic Time Warping [2] (DTW)
or a Monte Carlo sampling strategy, e.g., the Particle Filter [3]. Both strategies are computationally
demanding and do not generalize well to new motions with significantly different execution speeds.
Most importantly, in Interaction Primitives phase estimation and response generation are separate
processes that do not share the underlying computational principles and representations. Hence,
inference does not adequately use available data.

In this paper, we propose a fully Bayesian generalization of Interaction Primitives. This new for-
mulation enables us to learn a joint model of both space and time variables and encode them within
the same probabilistic representation. Consequently, we can use Bayesian inference to reason about
both when and how a robot should engage in a collaborative task. These results leverage a critical,
new insight made in this paper: a subset of human-robot interaction shares a theoretical and con-
ceptual relationship to the field of Simultaneous Localization and Mapping (SLAM) [4] – a mature
research area with a sound theoretical foundation. We show that this conceptual link between the
two fields can immediately be used to leverage the wealth of knowledge regarding SLAM and derive
a powerful new formulation of Interaction Primitives. The new, fully Bayesian Interaction Primitives
(BIP) (a) support multimodal data sources, (b) infer both phase and action variables, (c) significantly
reduce time complexity, and (d) improve inference and prediction accuracy. In our experiments we
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demonstrate that this allows us to effectively perform human-robot interaction in complex scenarios
involving multimodal, high-dimensional state spaces.

2 Related Work

Learning from demonstration is an important topic in the field of robotics, in large part due to the
complexity of both robots and their operating environments. One such technique, Dynamic Move-
ment Primitives [5], achieves this by fitting observed trajectories to dynamic equations and mapping
correlations between the equation parameters. Interaction Primitives [1] are a logical extension
of this concept to human-robot interaction, introducing multiple agents and temporal alignment of
trajectories. Interaction Primitives were later extended [6] to utilize probabilistic methods [7] as
opposed to dynamic equations, improving their generalization ability.

However, Interaction Primitives still require the use of time alignment algorithms such as Dynamic
Time Warping to function correctly. This poses several problems: DTW is difficult to use with high-
dimensional spaces in real-time [8], and Monte Carlo-based sampling strategies such as Particle
Filters scale exponentially with dimension [9] making them impractical.

Ultimately, we would like a framework capable of probabilistic joint models over both phase es-
timation and parameter estimation that isn’t reliant on independent time alignment. Models such
as Layered Hidden Markov Models [10] provide some insight, as the output from HMMs are used
as inputs to other HMMs and could potentially be used to bridge phase estimation and inference.
Similarly, Hierarchical HMMs [11] can fulfill a related role and have been successfully applied to
the task of activity recognition [12].

It is the problem of Simultaneous Localization and Mapping, however, that provides the basis for
our work. Algorithms such as FastSLAM [13] and EKF SLAM [3] effectively estimate a joint model
of a robot’s pose with respect to a map while simultaneously generating that same map.

3 Methodology

In this section, we introduce Bayesian Interaction Primitives in which we model human-robot col-
laborative tasks as a SLAM problem. In so doing, we couple together the phase estimation and
the probabilistic conditioning aspects from the Interaction Primitive framework, improving phase
estimation accuracy and significantly reducing its computation overhead. While this concept is ap-
plicable to the SLAM problem in general, we will demonstrate its effectiveness through the use of a
specific SLAM framework: Extended Kalman Filter (EKF) SLAM. We start by introducing Interac-
tion Primitives and our chosen SLAM framework individually, followed by our new BIP framework
which combines elements of both methods.

3.1 Interaction Primitives

Interaction Primitives are a learning from demonstration framework for human-robot interaction.
Initially conceived as an application of Dynamic Movement Primitives [5] and later extended to
Probabilistic Movement Primitives [6], the underlying idea of Interaction Primitives is to take several
demonstrations of two agents – consisting of time-dependent sensor trajectories – and compactly
model the relationship between the two agents’ movements. This trained model is then used to
generate motion trajectories of one of the agents when given a partial observation of the other agent.

Formally, we define the combined trajectory of both agents y as consisting of a sequence of T sensor
observations over time, y1:T = y1,y2, . . . ,yT , in which each state yt ∈ y1:T consists of sensor
measurements for Dc degrees of freedom of the controlled agent (the robot) and Do degrees of
freedom of the observed agent (the human): yt = [xo1, x

o
2, . . . , x

o
Do
, xc1, x

c
2, . . . , x

c
Dc

] where x ∈ R.
Each degree of freedom is modeled by a linear combination of time-dependent basis functions with
i.i.d. Gaussian white noise: xd ≈ ΦTt wd + εy , where Φt ∈ RB×1 is a vector of B Gaussian basis
functions and wd ∈ RB×1. Ultimately, we want to observe a partial trajectory y∗ of one agent (the
observed agent) and use this to condition w from which a response trajectory for the other agent
will be generated:

p(w|y∗) ∝ p(y∗|w)p(w) (1)
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where w = [w0
T , . . . ,wDc

T ]T ∈ R(Do+Dc)B×1. Probabilistically, we can represent the posterior
of observing a state yt at time t as,

p(yt|w) = N

yt
∣∣∣∣∣
Φt . . . 0

...
. . .

...
. . . . . . Φt


T

w,Σy

 . (2)

We assume that the weights for a demonstration are drawn from a Gaussian distribution, such that
p(w;µw,Σw) = N (w|µw,Σw), µw ∈ R(Do+Dc)B×1, Σw ∈ R(Do+Dc)B×(Do+Dc)B . Multiple
demonstrations are recorded so that the parameters µw and Σw can be learned through maximum
likelihood estimation or related parameter estimation methods. However, time is a significant factor
when recording demonstrations. Movements which differ in speed will yield different trajectories in
absolute time. To account for this, we replace absolute time t with relative time, referred to as phase
δ ∈ [0, 1], such that the first measurement in a trajectory is 0 and the last is 1.

Furthermore, because the Bayesian inference in Eq. 1 requires us to approximate the partially ob-
served trajectory y∗ with time-dependent basis functions, we must first estimate the length of y∗

with respect to the stored demonstrations, which is referred to as phase estimation. This is accom-
plished by using a time-alignment algorithm such as Dynamic Time Warping in order to generate a
phase alignment from the partially observed trajectory y∗ and the approximated mean trajectory of
the demonstrations. Inference can now be performed via recursive Bayesian filtering by setting the
controlled agent’s values in the measurement model to 0 with a suitably high measurement noise:

Ht =


Φoδ . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . Φoδ . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0



T

∈ R(Do+Dc)×(Do+Dc)B , (3)

K = ΣwH
T
t (HtΣwH

T
t + Σz)

−1, (4)

µ+
w = µw +Kt(zt −Htµw), (5)

Σ+
w = (I −KtHt)Σw. (6)

3.2 EKF SLAM

The Simultaneous Localization and Mapping problem is concerned with localizing a robot’s state
in time st with respect to a map m while simultaneously determining the map of the environment.
Specifically, we focus on Extended Kalman Filter (EKF) SLAM, in which an Extended Kalman Fil-
ter approximates the state st as well as the position of landmarks within the map with a Gaussian dis-
tribution. Ultimately, we are concerned with finding the following posterior probability of a robot’s
state at time t given a time-dependent sequence of sensor measurements z of the map landmarks
and the control actions which generate the robot’s motion u: p(st|z1:t,u1:t) = N (st|µt,Σt). For
simplicity, we assume that the correspondence between the sensor measurements and the map land-
marks is known.

We define the EKF state as consisting of D degrees of freedom for the robot as well as N map
landmarks: s = [x1, . . . , xD,m1, . . . ,mN ]T , x ∈ R,m ∈ R. In problems requiring an EKF, either
the state transition model st = g(µt, st−1) + εt or the measurement model zt = h(st) + δt use
nonlinear functions. A Kalman filter is a recursive state estimator and projecting a Gaussian belief
through a nonlinear function (g or h) may not yield a Gaussian result. Thus, EKFs approximate the
nonlinear functions with linear functions (G and H) evaluated at the current state. The resulting
EKF SLAM equations are shown below:

3



Figure 1: Graphical model of the EKF localization approach to Interaction Primitives.

µt = g(ut,µt−1), (7)

Σt = GtΣt−1G
T
t +Rt, (8)

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1, (9)

µ+
t = µt +Kt(zt − h(µt)), (10)

Σ+
t = (I −KtHt)Σt. (11)

3.3 Bayesian Interaction Primitives

Having introduced both Interaction Primitives and EKF SLAM, we now describe how these two
methods can be coupled together such that we can perform phase estimation and Bayesian inference
in the same step. As presented in Sec. 3.1, phase estimation is required when we have a partial
trajectory y∗ of observations of the observed agent and wish to perform Bayesian inference on the
generated trajectory. In the original IP formulation, phase estimation was performed via a time-
alignment algorithm, however, in BIP we choose to view this as a localization problem. In EKF
localization, we have a mapm consisting ofN landmarks and we wish to determine the robot’s pose
st with respect to the landmarks. The phase can be thought of as our robot state, st = δt: it indicates
where we currently are relative to a set of known demonstration trajectories. Thus, we can view the
distribution over the demonstration weights, µw and Σw, as our map as shown in Fig. 1. However,
there is a weakness with this approach: consider what happens if one or more of the trajectory
degrees of freedom is static for a period of time. In this case, if the predicted measurement and the
actual measurement do not differ by much – which is likely since the trajectory is static, meaning
the phase won’t impact the predicted value – then it is not possible to estimate the change in phase.
Therefore, we also model the phase velocity δ̇ as a state variable. If we assume a constant velocity
model, then static trajectories will be handled properly. The extension to SLAM is trivial; simply add
the basis weights to the robot state in place of the landmarks, st = [δt, δ̇t,w]T ∈ R(Do+Dc)B+2×1.
There are as many landmarks as there are basis functions for all degrees of freedom.

Accordingly, we define the relevant EKF SLAM equations:

st = [δt, δ̇t,w
T ]T , (12)

p(st|z1:t) = N (st|µt,Σt), (13)

µ0 = [0, β,µTw]T , (14)

Σ0 =

[
Σδ,δ Σδ,Σw
ΣΣw,δ Σw,w

]
, (15)

where µt ∈ R(Do+Dc)B+2×1, Σt ∈ R(Do+Dc)B+2×(Do+Dc)B+2, β is the average phase velocity in
the stored demonstrations, z1:t = y1:t∗, and Σw,w = Σw. The motion model is a simple constant
velocity model,

µt = µt−1 +

[
1 ∆t . . . 0
0 1 . . . 0

]
︸ ︷︷ ︸

F

T

[1, 1]T +N (0,F T
[
σδ,δ σδ,δ̇
σδ̇,δ σδ̇,δ̇

]
︸ ︷︷ ︸

Qt

F ), Gt =

[
0
0

]
, (16)
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while the measurement model is the same as in standard Interaction Primitives,

zt =


ΦTδ w1

ΦTδ w2

...
ΦTδ wDc


︸ ︷︷ ︸

h(µt)

+N (0,


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 0 σDc


︸ ︷︷ ︸

Rt

). (17)

However, when calculating the Jacobian we must now account for both the phase and phase velocity:

Ht =
∂h(µt)

∂xt
=


∂ΦTδ w1

∂δ
∂ΦTδ w1

∂δ̇

∂ΦTδ w1

∂w1
. . .

∂ΦTδ w1

∂wDc
...

...
...

. . .
...

∂ΦTδ wDc
∂δ

∂ΦTδ wDc
∂δ̇

∂ΦTδ wDc
∂w1

. . .
∂ΦTδ wDc
∂wDc

 ,

=


∂ΦTδ w1

∂δ 0 ΦTδ . . . 0
...

...
...

. . .
...

∂ΦTδ wDc
∂δ 0 0 . . . ΦTδ

 .
(18)

The standard EKF SLAM equations are used from this point forward. Our approach has several ad-
vantages over the standard Interaction Primitive framework. The first and foremost is that the phase
estimation is now coupled to conditioning in recursive state estimation. With the DTW approach,
phase estimation is either performed repeatedly against the conditioned weights with the entire ob-
served trajectory (thus being computationally inefficient), or performed iteratively with only the new
observations and thus suffering from an aggregation of errors. By incorporating the phase and phase
velocity into the Bayesian inference we can avoid these issues entirely. Second, we now get phase
estimation ”for free”, computationally speaking, in that the weights must be conditioned regardless.
However, adding two dimensions to the EKF state that we are already conditioning over is relatively
negligible compared to performing DTW every time step.

4 Experiments and Results

In order to analyze the effectiveness of Bayesian Interaction Primitives1, we test the accuracy, ro-
bustness, and computational efficiency against standard Interaction Primitives in three scenarios:
one involving synthetic benchmark data and the other two real data from a complex, multimodal,
human-robot interaction scenario.

4.1 Experimental Setup

The first experiment utilizes a sample of two-dimensional handwriting data, as shown in Fig. 2. The
original trajectory consists of 100 measured states, yt = [x, y]T , from which new trajectories are
created via translation, interpolation, and truncation. Accuracy is measured in terms of the mean
absolute error of both dimensions over all time steps.

The effectiveness of BIP is first compared to IP in terms of temporal robustness: 50 training trajec-
tories are generated in which each state yt ∈ y is transformed by a linear translation drawn from
the Gaussian distribution N (0, 5.0) with i.i.d. Gaussian noise N (0, 0.1) applied to each state. Test
trajectories are generated with varying lengths by sampling from the trained linear basis model and
applying a linear transformation drawn from the same distribution as applied to the training demon-
strations. The sampled trajectories vary from 25 to 400 samples (20 trajectories for each domain
value), equivalent to a four-fold decrease in temporal speed up to a four-fold increase, assuming a
constant sampling frequency. Next we analyze the spatial robustness of BIP by applying different
magnitudes of linear translations. The training and test trajectories are held constant at 100 samples,
however, the translation is now sampled from a uniform distribution U(−a, a) where a ∈ [1, 15].
Lastly, we analyze the robustness of BIP to partially observed trajectories. Training and test tra-
jectories are generated via translations drawn from the Gaussian distribution N (0, 5.0) with i.i.d.

1Library source code available at: http://interactive-robotics.engineering.asu.edu/interaction-primitives
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Figure 2: Experimental setup for 1 (left), 2 (middle), and 3 (right).

Gaussian noise N (0, 0.1) with 100 samples per trajectory. However, now the test trajectories are
truncated from the end such that only the first 10b samples remain and the phase value for the last
observed measurement is b, with b ∈ [0.1, 1.0].

The second and third experiments consist of a human-robot interaction scenario between a human
outfitted with wearable sensors of different modalities and a Universal Robotics UR5 6-DOF robotic
arm equipped with a three-finger Robotiq Adaptive Gripper. In both experiments, the trajectories
consist of 6 separate sensor modalities for a total of 74 DOF. These include: Kinect skeleton tracking
for 13 joints, 6-axis inertial measurement unit (IMU) sensor readings on each forearm, electromyog-
raphy (EMG) readings from each forearm, pressure sensor readings from each foot, and joint angles
for each joint in the UR5 and the gripper. Sensor readings are synchronized online and collected at
a frequency of 30 Hz. Training trajectories are obtained via kinesthetic teaching, i.e., the robot is
manually manipulated in tandem with the human to compose demonstrations. Testing is performed
via leave-one-out cross validation, where the UR5 trajectories are intentionally excluded such that
we can measure the error between the generated UR5 trajectory and the expected trajectory. In order
to test temporal robustness, test trajectories are truncated and expanded via non-linear deletion and
duplication of measurement states drawn from a uniform distribution.

In the second experiment, the human attempts to reach for an object placed on a table out of reach,
as shown in Fig. 2. The robot, moving in response to the human, reaches for the object, grasps it,
and performs a hand-over maneuver such that the trajectory ends with the human holding the object.
It should be noted that no visual detection is used in this experiment; the location of the object is
inferred purely from the human’s trajectory. The purpose of this experiment is to demonstrate a
robotic response to human ergonomics and safety.

The third experiment involves the human and UR5 cooperatively manipulating an object, as shown
in Fig. 2. The human grasps the box from one side and the UR5 from the other and together they
cooperatively lift the box such that it is placed on a nearby table. In this scenario, we demonstrate
the importance of utilizing multiple sensor modalities. The object being manipulated is a large box
which obstructs visual skeleton tracking by the Kinect, rendering it all but useless for trajectory
prediction. This is an extremely common scenario in everyday life and it is important for human-
robot interaction algorithms to be capable of accommodating it.

In each experiment, the BIP algorithm presented in this paper is compared against a standard IP
implementation utilizing DTW for phase estimation. Our IP implementation performs a DTW search
every 5 measurement updates so as to improve computational efficiency with the reference trajectory
projected from the most recently conditioned weights.

4.2 Results and Discussion

The results from the first experiment indicate clear advantages in the BIP framework over standard
IP. We first note that while BIP performed slightly worse than IP in terms of temporal robustness
(Fig. 4) for very slow and very fast motions (< 50% or > 300% movement speed), the generated
trajectories in between these extremes are more accurate as well as more consistent, i.e., a smaller
standard deviation. Particularly noteworthy is the excellent inference accuracy when the test trajec-
tory is close to the same temporal speed as the training demonstrations; this is a common scenario
so accuracy is vital. At the same time, BIP significantly outperformed IP in the spatial robustness
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Figure 3: The results for the spatial robustness test for Experiment 1. The x-axis indicates the value
of a for the uniform distribution from which translations were drawn.
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Figure 4: The mean absolute error (top) and mean phase error (bottom) for the temporal robustness
test for Experiment 1 (left), Experiment 2 (middle), and Experiment 3 (right). A trajectory length of
1.0 is normal speed, 2.0 twice as fast, etc. The lines indicate the mean result and the shaded regions
indicate the standard deviation.

test which is shown in Fig. 3, indicating that BIP is quite robust with regard to spatial uncertainty. In
terms of the partial visibility robustness results shown in Fig. 5, the results between the two methods
are closer; however, BIP again outperforms IP in both mean absolute error and mean phase error at
nearly every length trajectory, only lagging 20% or less of the test trajectory is observed.

These same trends only become more evident for the more complicated scenarios in Experiments
2 and 3. It is clear from Fig. 4 and Fig. 5 that the standard IP algorithm struggles to estimate the
correct phase; even with 100% of the trajectory visible there is still a mean phase error of 0.34
and 0.32 in Experiments 2 and 3 respectively. As a result, the inference accuracy does not display
any noticeable improvement as more of the observed trajectory is made available. BIP, by contrast,
exhibits a constant increase in phase estimation accuracy which leads to a significant improvement in
the predicted trajectory error. This is the same type of behavior that is seen in the partial visibility test
of Experiment 1. We also observe that the choice of process and measurement noise values becomes
extremely important with BIP; a poor choice of noise can cause severe effects in the accuracy of the
Bayesian inference.

What makes these results all the more striking is the fact that BIP enjoys a significant computational
advantage over IP in every experiment, as shown in Fig. 6. While computational times are difficult
to estimate and highly dependent on algorithm implementation, there is the simple fact that the
standard IP framework must spend upwards of O(N2) computational cycles performing DTW at
each measurement update step. This is an overhead that BIP simply does not have, and as a result
achieves upwards of a 66% reduction in computation time for fully observed trajectories regardless
of the dimensionality of the state vector.
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Figure 5: The mean absolute error (top) and mean phase error (bottom) for the partial visibility
robustness test for Experiment 1 (left), Experiment 2 (middle), and Experiment 3 (right). The length
of the test trajectories are given as a ratio of the observed trajectory to the full trajectory along the
x-axis.
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Figure 6: The computational time required to process trajectories of varying lengths for Experiment
1 (left), Experiment 2 (middle), and Experiment 3 (right).

5 Conclusion

In this work we have introduced a fully Bayesian generalization of Interaction Primitives in which
phase estimation and trajectory conditioning are coupled together in a joint model of both time and
space. We have shown that this enables greater phase estimation accuracy, and consequently infer-
ence accuracy, along with reduced computational complexity in human-robot interaction scenarios.
Most importantly, this allows us to tackle far more complex scenarios than is possible with nor-
mal IP. Despite interacting with a robot in a multimodal, high-dimensional environment, Bayesian
Interaction Primitives are capable of accurately performing trajectory inference, thus opening the
door to further work in such complex scenarios. Furthermore, we have established a connection be-
tween SLAM and human-robot interaction; this is advantageous in that the vast body of knowledge
regarding localization and mapping may now be applicable to interaction.
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