
Extracting Bimanual Synergies with Reinforcement Learning

Kevin Sebastian Luck1 and Heni Ben Amor1

Abstract— Motor synergies are an important concept in
human motor control. Through the co-activation of multiple
muscles, complex motion involving many degrees-of-freedom
can be generated. However, leveraging this concept in robotics
typically entails using human data that may be incompatible for
the kinematics of the robot. In this paper, our goal is to enable
a robot to identify synergies for low-dimensional control using
trial-and-error only. We discuss how synergies can be learned
through latent space policy search and introduce an extension
of the algorithm for the re-use of previously learned synergies
for exploration. The application of the algorithm on a bimanual
manipulation task for the Baxter robot shows that performance
can be increased by reusing learned synergies intra-task when
learning to lift objects. But the reuse of synergies between
two tasks with different objects did not lead to a significant
improvement.

I. INTRODUCTION

The ability to manipulate objects in the environment is

an important skill for humans and robots and has attracted

a large body of research. Motor skills for reaching and

grasping, for example, allow robots to physically interact

with their immediate surroundings. Yet, generating control

policies for these tasks is highly challenging due to the

high number of involved degrees-of-freedom (DOF) and the

inherent uncertainty.

An important concept in motor control that has helped

to overcome these challenges, is the concept of motor

synergies [1]; joint co-activations of a set of muscles from

a smaller number of neural commands. A combination of a

small number of synergies, leads to a large range of different

possible movements. In humans, such synergies reduce the

dimensionality of the control task and, in turn, reduce the

cognitive effort during learning and execution [2], [3], [4].

Similarly, in robotics, synergies have been shown to improve

grasp planning performance, while at the same time reducing

the computational complexity [5], [6]. However, it is unclear

how to identify and extract such synergies for different robot

types and morphologies. Existing approaches typically rely

on human demonstrations recorded through motion capture

systems. Yet, synergies highly depend on the underlying

kinematics and mechanics of the system and may not be

easily transferred between a human and a robot.

Going beyond uni-manual manipulation, there are also

many tasks that require the coordinated use of multiple limbs.

Research in human motor control has presented evidence for

the existence of bimanual synergies during object manipu-

lation [7]. Different motor synergies may span both arms at

1Kevin S. Luck and Heni Ben Amor are with the School of
Computing, Informatics, and Decision Systems Engineering, Arizona
State University, Tempe, AZ 85281, USA mail@kevin-luck.net,
hbamor@asu.edu

Fig. 1: A bimanual robot learns to lift an object while simul-

taneously identifying synergies among the control variables.

the same time, or each arm separately. The ability to identify

synergies that affect one or multiple groups of variables

at the same time, would allow robots to efficiently learn

bimanual manipulation tasks, e.g., pouring, turning a valve,

or picking up a box. In this paper, we present a reinforcement

learning method that jointly learns motor synergies, as well

as control policies for bimanual robot manipulation. Based

on our previous discussion of Group Factor Policy Search

(GrouPS) [8], we will show how sample-efficient reinforce-

ment learning can be performed on a physical robot, without

the need for potentially inaccurate simulations. In particular,

we will show how GrouPS can autonomously learn dual-

arm lifting of objects (see Fig. 1), without relying on prior

human demonstrations. The algorithm extracts custom-made

synergies that best fit the current robot and task. This is

achieved through a combination of dimensionality reduction

and policy search. Both, synergies and control policies,

are updated while learning, thus exhausting the information

provided by the sampling set executed in each iteration.

The result is a fast motor skill learning method for tasks

that involve the coordination of multiple limbs. In our

experiments, the robot autonomously learned object lifting

strategies within a relatively small number of trials, i.e., about

1 hour of training time.

The presented method also allows visualizing the extracted

bimanual synergies. Visualizing motor synergies enables

users to better understand the couplings between control vari-

ables. Additionally, extracted synergies typically form basic

movement “building blocks” which can be superimposed to

generate a large variety of different behaviors.

In the remainder of this paper, we will first introduce our

policy search method and subsequently present its applica-

tion to bimanual manipulation tasks.

II. RELATED WORK

Human beings and animals are capable of producing a

wide variety complex behaviors and motions that involve

the coordinated activation of a large number of muscles.

This ability poses the question of whether each muscle, or

degree-of-freedom is independently controlled by the brain

and the central nervous system. Research in neuroscience

indicates that groups of muscles may be organized in a

modular fashion to form muscle synergies. Activating a

synergy will jointly co-activate all involved muscles and

related joints. The result is a significant reduction in the

number of controlled DOFs. In the case of grasping, Santello

et al. [2] showed that ≈ 90% of the variance during human

grasping can be explained using only three synergies. To

this end, human demonstration of grasps were first collected

and, then, processed using Principal Component Analysis

(PCA). Dimensionality reduction techniques, such as PCA,

can uncover the lower-dimensional manifold in which the

recorded data points are embedded. Using a similar strategy,

other researcher teams have found evidence for synergies

in walking [3], running [9], or balancing [4]. Safavynia et

al. [10] showed that the acquisition of new motor skills can

enable the formation of new synergies. Hence, the compo-

sition of synergies is not static but can change as a result

of repeated practice and reinforcement learning. This also

means, that synergies across different subjects may converge

towards the same optimal composition that is induced by the

task constraints. Hug et al. [11] reported evidence for the

formation of similar muscles synergies across expert cyclists

over time.

In robotics, motor synergies such as Eigengrasps [5] are

typically generated by applying PCA on a set of training data.

In the field of grasping and manipulation, this methodology

has found wide spread application such as in [12], [6], [13],

[14] since it significantly reduces the number of control

parameters, while at the same time generating interpretable

principal components. Besides grasping, dimensionality re-

duction was also used to extract synergies for various other

robotics tasks. In [15], linear and non-linear manifold learn-

ing techniques are used to extract postural synergies for

walking and standing-up. The majority of these approaches

relies on a large training set of (approximate) solutions, prior

simulations, or human demonstrations to perform dimension-

ality reduction. Even if such data exists, it may drastically

bias the search by limiting it to the subspace of initially

provided solutions. Especially human demonstrations may

be ill-suited for identifying robot synergies. In [16], an

approach is present in which robot manipulator can learn

synergies from random movements. However, synergies are

often required for a specific task at hand. Hence, methods

are needed that can generate a set of synergies from a task

specification. In [17], we presented a first approach in which

synergies can be learned through reinforcement. However,

the approach did not allow for the specification of groups

of variables within a synergy. In contrast to that, the work

presented in the remainder of this paper allows for users to

identify specific connected groups of variables, e.g., left arm

vs. right arm. Providing this structural information, the algo-

rithm generates synergies that can both model inter-group,

as well as intra-group correlations [8]. This is particularly

useful for tasks that involve multiple limbs. Synergies can

be used to seed the learning algorithm with information

about the structure of the manifold to explore. In the case of

Group Factor Analysis, a first approach for transfer learning

was introduced in [18]. Although, we build upon the same

general idea of reusing previously learned factors, we focus

in this paper on a reinforcement learning setup rather than

a supervised learning setup. Furthermore, we investigate the

use of learned synergies for exploration in similar tasks.

III. EXTRACTING SYNERGIES WITH

POLICY SEARCH

Synergies for robot motions are typically generated

through the application of dimensionality reduction methods

on existing data, e.g., joint angles recorded from a human

subject. Our approach uses Group Factor Analysis (GFA) as

introduced by Klami et al. [19]. However, in contrast to other

work that relies on training data, we derive a reinforcement

learning method that inherently performs factor analysis.

In this section, we will introduce Group Factor Analysis

briefly, describe its properties, and then proceed to show how

Group Factor Analysis and Policy Search can be combined

to yield the Group Factor Policy Search (GrouPS) algorithm.

We close this section with the introduction of a new prior

distribution for the transformation matrix in GrouPS, which

enables the re-use of learned synergies for exploration.

A. Group Factor Analysis for Synergies

Based upon Factor Analysis, GFA assumes that the dimen-

sions of a dataset can be split into groups of variables. The

approach inherently assumes the existence of a strong cor-

relation between variables of the same group, e.g., because

they form a logical unit such as the leg of a robot, a regions

of the brain, or a gene set [19]. The model equation of GFA

for M groups reads

a
(m) = W

(m)
z+ µ(m) + ǫ(m), (1)

where W
(m) is the transformation matrix, µ(m) the mean

vector, and isotropic noise ǫ(m) ∼ N
(

0, τ̃−1
(m)I

)

defined

by the precision τ̃(m). The random vector z ∼ N (0, I) is

the same for all groups while the action a
(m) contains the

dimensions of the m-th group. Klami and colleagues intro-

duced prior distributions over the parameters of the model

equation given above. The most important prior distribution

is

p (W|α) =

M
∏

m=1

K
∏

k=1

Dm
∏

d=1

N
(

w
(m)
d,k

∣

∣

∣
0, α−1

m,k

)

, (2)

which defines a normal distribution over each entry of the

transformation matrix W, such that the matrix becomes

structurally sparse. The parameter αm,k is specific to each

group m and component k and is given by the log-linear

model logα = UV
T+µu1

T+1µT
v . The two matrices U ∈

R
M×R and V ∈ R

K×R are distributed according to a normal

distribution with zero mean and λ precision. The rank factor

R ≤ min(M,K) influences how sensitive the components

are to inter-group correlations. For R = min(M,K) the

log-linear model is equal to a gamma distributed model

assuming independent groups [20]. In order to compute the

parameters of GFA given a data set, Variational Inference is

used while assuming a factorization of parameters according

to p (θ) = q(W)q(τ)q(U)q(V)
∏T

t q(zt) with q being

the approximated distributions. For q(U) and q(V), point

estimators are chosen in order to compute the parameters

with an optimization method such as L-BFGS [21].

Input: Reward function R (·) and initializations of
parameters. Choose number of latent dimension n

and rank r. Set hyper-parameter and define

groupings of actions. Set Ŵ either to a previously
learned synergy or to zero.

while reward not converged do
for h=1:H do # Sample H rollouts

for t=1:T do
at = WiZφ+Mφ+Eφ

with Z ∼ N (0, I) and E ∼ N (0, τ̃),
where τ̃

(m) = τ̃−1
m I

Execute action at

Observe and store reward R (τ)

Initialization of q-distribution
while not converged do

Update q (M), q (W), q
(

Z̃

)

, q (α) and q (τ̃)

M = Eq(M) [M]
W = Eq(W) [W] with Eq. (9)
α = Eq(α) [α] with Eq. (11-14)
τ̃ = Eq(τ̃) [τ̃]

Result: Linear weights M for the feature vector φ,
representing the final policy. The columns of W
represent the factors of the latent space.

Algorithm 1: Outline of the Group Factor Policy

Search (GrouPS) algorithm. The algorithm is com-

patible to the previous version presented in [8] since

setting Ŵ to zero results in the original update

equations.

B. Group Factor Policy Search

In its traditional form, GFA requires a dataset of examples

in order to extract a low-dimensional manifold. However,

in our case we would like to uncover the low-dimensional

manifold without prior access to any such dataset. Instead,

our goal is to enable a robot to identify synergies for low-

dimensional control using trial-and-error only. To this end,

we derive a reinforcement algorithm that jointly estimates

parameters for dimensionality reduction, as well as a control

policy [8].

In our framework, a trajectory consisting of actions a and

states s is defined by

τ = (s1,a1, . . . , sT ,aT , sT+1) (3)

where T is the number of time steps, and sT+1 is the final

state. The objective of policy search is to maximize the

expected reward over all possible trajectories given by

Ep(τ) [r = 1] =

∫∫

p(τ , θ)p(r = 1|τ)dθdτ , (4)

where the reward r is defined as a binary variable with

probability p(r = 1|τ) ∝ exp(−c(τ)) and the cost function

c(·) [22]. The parameters of the policy are defined by θ.

Assuming the Markov property, the probability p(τ , θ) of

the trajectory can be written as

p(τ , θ) = p(θ)p(s1)

T
∏

t=1

p(st+1|st,at)π(at|st, θ), (5)

with a prior distribution p(θ) over the parameters θ, state

probabilities p(s1) and p(st+1|st,at) and the stochastic

policy π(at|st, θ).
The model equation for our algorithm Group Factor Policy

Search (GrouPS) reads similar to Group Factor Analysis with

a
(m)
t =

(

W
(m)

Zt +M
(m) +E

(m)
t

)

φ(st, t), (6)

where a
(m)
t ∈ R

Dm represents the joint or action vector

and φ(st, t) ∈ R
p the feature vector containing the basis

functions in its entries. The actual values of the basis func-

tions depend on the current state or time step. For notational

clarity, we are going to omit states and actions for the

feature vector φ in the remainder of the paper. The matrices

Zt and E
(m)
t are distributed according to matrix-variate

normal distributions: each entry of the latent matrix Zt is

sampled from a standard normal distribution, whereas the

entries of E
(m)
t model the isotropic noise with N

(

0, τ̃−1
m

)

.

The mean policy is given by matrix M
(m) ∈ R

Dm×p

whose parameters, i.e. entries, have to be estimated. The

transformation matrix is given by W
(m) and contains the

extracted synergies in its columns. As shown in [17], the

term Ztφ can be rewritten as z̃t = Ztφ ∼ N
(

0,φTφI
)

,

indicating that the noise depends on the values of the basis

functions. In the case of normalized basis functions, i.e.

‖ φ ‖2= 1, this term is distributed according to a standard

normal distribution. Finally, given above distributions, the

stochastic policy π(at|st, θ) (Eq. 5) of Group Factor Analysis

can be found with

M
∏

m=1

N
(

a
(m)
t

∣

∣

∣
W

(m)
z̃t +M

(m)φ, (φTφ)τ̃−1
m I

)

. (7)

As stated in [8], Group Factor Policy Search does not

perform Factor Analysis for each group separately. Rather,

Eq. 7 in combination with the prior distribution of W

from Eq. 2 allows us to uncover components, i.e. columns,

in W with a strong correlation among the groups. For

the computation of the parameters we utilize a Variational

Inference approach and determine approximated distributions

given by the factorization q(θ) = q(Z̃)q(W)q(τ̃)q(M)q(α).
The final update equations of the algorithm (Alg. 1) and more

details regarding Group Factor Policy Search can be found

in [8].

C. Transfer Learning with GrouPS

One possibility to incorporate the idea of transfer learning

into Group Factor Policy Search is to use the latent space

found in one experiment as prior information for a subse-

quent experiment. The prior of the latent space is given by

the normal distribution p(w
(m)
d,k |αm,k) = N (w

(m)
d,k |0, α−1

m,k).

for each entry w
(m)
d,k of the transformation matrix W =

(W 1T,W 2T, . . .)T. The parameter αm,k is the variance

parameter controlling the inter-group flexibility of each di-

mension, i.e. column of W. We can now incorporate a

previously learned latent space by changing the prior of W

to

p
(

w
(m)
d,k |αm,k

)

= N
(

w
(m)
d,k

∣

∣

∣
ŵ

(m)
d,k , α−1

m,k

)

(8)

with ŵ
(m)
d,k being the entries of Ŵ learned in a previous

experiment. This new prior changes the update equations for

both α and W for the Variational Bayes update. For the

transformation matrix W only the update of the mean [8,

Eq. 21] has to be changed to

µ
W
m,j = Σ

W
m ·Ep(τ)

[

p(r = 1|τ)

R̂

T
∑

t=1





(

a
(m)
t,j −EM

[

m
(m)
j,:

]

φ

)

Ez̃

[

z̃
T
t

]

φTφEτ̃m [τ̃m]−1 − ŵ
(m)
j,: αm,K









(9)

while for the log-linear model of α the derivatives change

(see Appendix). Introducing this new prior offers the pos-

sibility to infuse the algorithm with transformation matrices

from different runs or tasks (Alg. 1). The intuition behind

sparsity for the transformation matrix W is now slightly

different: instead of driving the entries of the transformation

matrix to zero the sparsity prior is trying to maintain the

mean and α controls if deviations are added to one group

or several groups per column of W.

IV. EXPERIMENTS

In order to evaluate the ability of the GrouPS algorithm to

extract meaningful synergies during reinforcement learning,

we performed experiments with bimanual manipulation tasks

on the Baxter robot. In the following experiments, the robot

was tasked to learn how to lift an object with both arms. The

goal is to lift the object as high as possible while retaining

stability. The initial policy consist of a zeroed M-matrix, i.e.,

the robot performs no action.

Validation

Check

collisions

Repeat Validation

Fig. 2: In each iteration a created sample, i.e. trajectory, is

first simulated and to be accepted by the process (or a human

operator) for execution. Then the trajectory is executed on

the real robot and a reward is generated, which will be used

by GrouPS to compute the updates of the policy parameters.

1) Experimental Setup: Each Object was placed on a table

of height 77cm in front of a Baxter robot with the same

initial position of the arms. Then the GrouPS algorithm was

executed for five latent dimensions and rank three over ten

iterations. In each iteration but the first, ten samples were

newly generated and executed. Each sample constitutes a full

lifting trajectory. The samples were included in a sample set

of size twenty, from which only the ten best samples were

selected for processing while the others were discarded. This

is similar to the importance sampling process used in [8],

[17], [23]. In the very first iteration, twenty samples were

generated. The motivation behind this approach is to allow

failure during learning in the real world and compensate for

any noise in the reward function. The actions at represent

velocities in joint angles of the Baxter robot, thus the

action space has 14 dimensions. The whole learning process

was performed with real executions on the robot only, and

using only rewards generated from the real world (Fig.

2). A kinematic validation process was only used for the

purpose of detecting hazardous trajectories before execution

(Validation). If a trajectory is deemed dangerous, the process

can deny its execution and assign a reward of zero to the

trajectory, thus effectively removing the trajectory from the

set used for the estimation of the parameters.

2) Groups: For the experiments on the Baxter robot, four

groups were chosen in total, two for each arm. The first

group for each arm contains four joints with all rotational

and one twisting joint, while the second group consists of

three twisting joints (see Table I).

3) Used Basis Functions: As basis functions φ, eight

radial basis functions, i.e. Gaussian distributions, with a vari-

ance of three were used. The mean values were equidistant

distributed over the 15 time steps of the trajectory starting

with time step −3 and ending with time step 18.

4) Reward Function: As input for the reward function,

we chose the height of the object in the picture delivered by

(a) The 800x1280 image deliv-
ered by Baxter’s head camera.

(b) The image after using color
and median filtering.

Fig. 3: The current height of an object is approximated by

color filtering.

Fig. 4: The four different objects lifted next to each other

with the ICRA duck as size reference.

the integrated head camera of the Baxter robot. In order to

detect the object during lifting, we used basic color filtering

and reflective green tape on the objects (Fig. 3).

For each time step in the trajectory, we create and process

one image and detect the maximal height of green pixels

in the image. Thus, our reward function does not use the

actual height of the object, but the pixel height h in the

projected 2D image. Since we employed episodic rewards in

our experiments, we used the sum of the exponential cost

function resulting in equation
∑T

t=1 exp(−(1− ht

800)) for the

reward. The height ht is here normalized with the image

height of 800 pixel. Due to the angle of the camera, the

reward function is sensitive to horizontal movements of the

objects, thus leading to noticeable noise in the generated

reward values.

5) Objects: Experiments were performed with four differ-

ent objects: An orange ball with diameter 33cm, a yellow ball

with diameter 27cm, a black ball with diameter 22cm, and a

cardboard box with dimensions 26cm×13.5cm×18cm (Fig.

4). While the cardboard box is a rigid object, all balls are

soft, non-rigid and deformable. This property makes them

particularly challenging to handle for the robot. While the

evaluations concentrate on comparisons between the orange

ball and box, final results of the remaining two balls will be

shown to demonstrate the general capability of GrouPS to

solve the task.

6) Time and Sample Size: In all but the first iterations,

ten samples were generated while in the very first iteration

twenty samples were produced. Thus, the total sample size

is 110 samples for one experiment. Each execution of a

sample requires about 25 seconds and one complete iteration

about four minutes. Accordingly, one experiment requires

approximately one hour.

7) Reproducibility: All involved items are internationally

available through the company IKEA®. The cardboard box is

a standard parcel size with dimensions 26cm×13.5cm×18cm

and is used by several international logistics companies. The

Matlab code for this experiment together with a connection

interface to the Baxter robot is available on our website1

including all seeds for the random number generators.

8) Experiments: While not the main scope of this pa-

per, a comparison was performed between GrouPS and the

Policy Learning by Weighting Exploration with the Returns

algorithm (PoWER) [23] on the task of lifting the orange

ball (Fig. 6). PoWER was used in a configuration with a

full covariance matrix over the number of basis functions.

PoWER and GrouPS are naturally two very similar algo-

rithms based on stochastic search. While PoWER makes

use of an Expectation Maximization framework, the GrouPS

algorithm is based on Variational Inference. Also, exploration

in PoWER is solely in the high dimensional space without

exploiting latent structures for directed exploration while

GrouPS incorporates this feature due to its more complex

model. Both algorithms made use of the same number of

samples over ten iterations.

In order to evaluate the introduced modification of ini-

tializing GrouPS with previously learned synergies, three

experiments were conducted: First, GrouPS was initialized

with synergies found while learning to lift the orange ball

(Fig. 9) and then executed four times on the same task.

Then, the same initialization was used to learn to lift the

box with the Baxter robot. Finally, Groups with random

initialization and without pre-initialized mean was applied on

the box lifting task and the learned synergies used to initialize

GrouPS for lifting the orange ball. All above described

experiments were performed four times each.

V. RESULTS

The GrouPS algorithm (without extension) was able to find

trajectories for lifting non-rigid objects of different sizes such

as the orange ball (Fig. 6), as well as for a rigid cardboard

box (Fig. 5). All of the trajectories resulted in a stable final

position holding the object in a higher position (Fig. 8). One

sequence of synergy matrices W is shown in Figure 9, where

the color of the squares indicates whether the values are

negative (gray) or positive (black) and their size correspond

to their absolute value. The depicted transformation matrices

were computed during an experiment aiming to learn how

to lift the orange ball. The extracted synergies can now

be found in the columns of W and replayed directly on

the robot for evaluation. Figure 10 shows two synergies

found by GrouPS during the learning process which encodes

movements for both arms. The first synergy is an opening and

closing movement of both arms, while the second synergy

showcases a movement to up or down. Both synergies can

be combined to generate more complex movements like an

upward, closing movement.

1http://interactive-robotics.engineering.asu.edu/

project/bimanual-synergies/

Fig. 5: The final sequence of actions for lifting a cardboard box found by GrouPS.

Fig. 6: One final sequence of actions for lifting the orange ball found by GrouPS.

Fig. 7: A comparison between the GrouPS and PoWER

algorithm on a lifting task with the orange ball. The presented

variant of GrouPS using a synergy matrix from the same task

outperforms both GrouPS and PoWER. Each algorithm was

executed four times and the mean and standard variance were

calculated. The vertical axis shows the total cost over 15 time

steps and is based on the height of the ball.

Fig. 7 depicts a comparison of results between GrouPS,

GrouPS using synergies, and PoWER on the task of lifting

the orange ball. While GrouPS outperforms PoWER, pre-

initializing GrouPS with learned synergies from the same

task leads to another increase in performance. The compar-

ison between using synergies learned from different tasks

and GrouPS without modification is presented in Table II

which shows that the differences between both variants are

not significant.

(a) Orange Ball (b) Yellow Ball

(c) Box (d) Black Ball

Fig. 8: The final pose of trajectories for lifting an object.

VI. DISCUSSION

The purpose of the experiments presented above was

to evaluate the ability of the Group Factor Policy Search

algorithm to extract not only a successful policy [8], but

also uncover latent synergies specific to the task and robot

during the learning process. It was found that Group Factor

Policy Search is in fact able to uncover synergies (Fig. 9

1 2 3 4 5

J
o
in

ts

2

4

6

8

10

12

14

T=1

1 2 3 4 5

T=3

G
ro

u
p

 1
 G

ro
u

p
 2

 G
ro

u
p

 3

T=6

1 2 3 4 5 1 2 3 4 5

T=10

G
ro

u
p
 4

Fig. 9: A sequence of transformation matrices W computed in each iteration t. The transformation matrix contains the

uncovered synergies and is forced to be sparse by the prior distribution on W. The color of the squares represent the

sign of the value for this entry: Gray color means negative values and black positive values. The size of the squares are

corresponding with the absolute value in such a way that a square is small for small values and the opposite for bigger

values.

Fig. 10: Two synergies and their combinations found during

the execution of the GrouPS algorithm for learning to lift

the orange ball. The horizontal axis is showing a synergy

of closing and opening motions whereas the vertical axis

represents a up- and downwards movement of both arms.

Different combinations of those synergies are shown in the

four corners of this figure. The video attachment accompa-

nying this paper shows the full execution of those synergies.

TABLE I: The groups for the joints of the Baxter robot

chosen for the experiments presented in this paper. The joint

names correspond to the technical documentation by Rethink

Robotics

Group Left Arm

1 W1

1 S1

1 E0

1 E1

2 W0

2 S0

2 W2

Group Right Arm

3 W1

3 S1

3 E0

3 E1

4 W0

4 S0

4 W2

TABLE II: Comparison of GrouPS with the proposed mod-

ification for reusing synergies from different tasks. For the

task of lifting the orange ball one set of synergies, the

transformation matrix W, learned in the eight iteration on

the box lifting task were used and vice-versa for the box-

lifting task. The table shows the final mean cost and standard

deviation.

Algorithm Cost (Orange Ball)

GrouPS 9.55± 0.19
GrouPS initialized with Synergies 9.47± 0.22

Algorithm Cost (Box)

GrouPS 9.26± 0.27
GrouPS initialized with Synergies 9.28± 0.25

and Fig. 10) while developing a successful policy for a bi-

manual lifting task. Figure 10 also demonstrates, that these

synergies can be combined in a meaningful way to produce

new or adapted motions which may be used for similar tasks

or initializations of other learning algorithms. Interestingly,

the algorithm uncovers two synergies which resemble the

nature of the task very well (Fig. 10): While different values

of one synergy lead to an opening or closing movement,

the second synergy controls the vertical movement of both

hands.

An analysis of the transformation matrices in Figure 9

shows that weak correlations between groups disappear over

time and strong ones reinforce. However, it can be noted that

the transformation matrix is thinning out towards the end of

the learning process, very likely due to the convergence to an

optimal policy. Thus, it is more likely to find useful synergies

in earlier iterations. The most usable synergies were be found

in iterations seven and eight.

An variant of the GrouPS algorithm was presented which

can make use of uncovered synergies for directed explo-

ration. While it was found that GrouPS initialized with

synergies learned from the same task indeed leads to an

increase in performance (Fig. 7) it is surprising to find that is

not the case when using synergies learned from another task.

This applies for both directions: using synergies from lifting

the orange ball to learn to lift the box, and using synergies

learned from lifting the box to learn to lift the orange ball.

Both objects, box and ball, are naturally different in shape

and so is the optimal strategy for lifting them. Especially the

box posed challenges for the robot, since the endeffectors can

slide easily along the sides of the box. However, the robot

learned to exploit this property over time in order to change

the orientation of the box such that one corner of the box

points upwards.

VII. CONCLUSIONS

In this paper, we presented a methodology and algorithm

for extracting synergies for motor skill learning in robots

and using them to accelerate learning. The approach does

not require any prior data from human demonstrations or

other sources. Instead, we presented a reinforcement learning

method that naturally combines dimensionality reduction

and policy search. We have shown in experiments with

a real-world robot that this combination leads to sample-

efficient reinforcement learning. In addition, we have dis-

cussed how the generated synergies can be visualized in

order to introspect the learning process and better understand

the generated coupling of joints.

The potential for speeding up learning in inter- or intra-

task transfer using synergies was evaluated. It was found

that the presented variant of GrouPS can outperform the

base algorithm when reusing synergies from the same task.

However, using synergies from a different task did not lead to

an increased performance. In future work we will investigate

if this insight applies to the general case of transfer learning

with GrouPS.

APPENDIX

Since the prior distribution of the transformation matrix

W depends on α, the update rule for the log-linear model

has also to be updated. Changing the prior of W leads to

a slightly different log-likelihood for the optimization of the

parameters as stated in [19] with Γ being

Γ = EW

[

(w
(m)
k,: −w

(m)′
k,:)(w

(m)
k,: −w

(m)′
k,:)T

]

. (10)

The final gradients are then given with

∂LU,V(θ)

∂Um,:
= 2λUm,: +

K
∑

k=1

DmVk,:

−

K
∑

K=1

Γ exp
(

Um,:V
T
k,: + µUm

+ µVk

)

Vk,:,

(11)

∂LU,V(θ)

∂Vm,:
= 2λVk,: +

M
∑

m=1

DmUm,:

−

M
∑

m=1

Γ exp
(

Um,:V
T
k,: + µUm

+ µVk

)

Um,:,

(12)

∂LU,V (θ)

∂µUm

= DmK

−

K
∑

K=1

Γ exp
(

Um,:V
T
k,: + µUm

+ µVk

)

,

(13)

∂LU,V (θ)

∂µVk

= DmM

−

M
∑

m=1

Γ exp
(

Um,:V
T
k,: + µUm

+ µVk

)

.

(14)

REFERENCES

[1] N. A. Bernstein, The co-ordination and regulation of movements.
Pergamon Press, 1967.

[2] M. Santello, M. Flanders, and J. Soechting, “Postural hand synergies
for tool use,” The Journal of Neuroscience, vol. 18, no. 23, 1998.

[3] X. Wang, N. O’Dwyer, and M. Halaki, “A review on the coordinative
structure of human walking and the application of principal component
analysis,” Neural Regeneration Research, vol. 8, no. 7, pp. 662–670,
2013.

[4] G. Torres-Oviedo and L. H. Ting, “Subject-specific muscle synergies
in human balance control are consistent across different biomechanical
contexts,” Journal of Neurophysiology, vol. 103, no. 6, pp. 3084–3098,
2010.

[5] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” The International Journal of Robotics Research,
vol. 28, no. 7, pp. 851–867, 2009.

[6] H. Ben Amor, G. Heumer, B. Jung, and A. Vitzthum, “Grasp syn-
thesis from low-dimensional probabilistic grasp models,” Computer

Animation and Virtual Worlds, vol. 19, no. 3-4, pp. 445–454, 2008.
[7] N. Kang and J. H. Cauraugh, “Force control improvements in chronic

stroke: bimanual coordination and motor synergy evidence after cou-
pled bimanual movement training,” Experimental Brain Research, vol.
232, no. 2, pp. 503–513, 2014.

[8] K. S. Luck, J. Pajarinen, E. Berger, V. Kyrki, and H. B. Amor, “Sparse
latent space policy search,” in Thirtieth AAAI Conference on Artificial

Intelligence, 2016.
[9] S. Hagio, F. M., and K. M., “Identification of muscle synergies associ-

ated with gait transition in humans,” Frontiers in Human Neuroscience,
vol. 9, no. 48, 2015.

[10] S. A. Safavynia, G. Torres-Oviedo, and L. H. Ting, “Muscle synergies:
implications for clinical evaluation and rehabilitation of movement,”
Topics in spinal cord injury rehabilitation, vol. 17, no. 1, p. 16, 2011.

[11] F. Hug, N. A. Turpin, A. Guével, and S. Dorel, “Is interindividual
variability of emg patterns in trained cyclists related to different muscle
synergies?” Journal of Applied Physiology, vol. 108, no. 6, pp. 1727–
1736, 2010.

[12] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis-a survey,” Trans. Rob., vol. 30, no. 2, pp. 289–309, Apr.
2014.

[13] R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” Int. J. Rob. Res., vol. 35, no. 1-3,
pp. 161–185, Jan. 2016.

[14] S. Andrews and P. G. Kry, “Technical section: Goal directed multi-
finger manipulation: Control policies and analysis,” Comput. Graph.,
vol. 37, no. 7, pp. 830–839, Nov. 2013.

[15] H. Ben Amor, E. Berger, D. Vogt, and B. Jung, Kinesthetic Bootstrap-

ping: Teaching Motor Skills to Humanoid Robots through Physical

Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 492–499.

[16] K. C. D. Fu, F. D. Libera, and H. Ishiguro, “Extracting motor synergies
from random movements for low-dimensional task-space control of
musculoskeletal robots,” Bioinspiration and Biomimetics, vol. 10,
no. 5, p. 056016, 2015.

[17] K. S. Luck, G. Neumann, E. Berger, J. Peters, and H. B. Amor, “Latent
space policy search for robotics,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Sept 2014, pp. 1434–
1440.

[18] E. Leppäaho, “Transfer Learning with Group Factor Analysis,” Mas-
ter’s thesis, Aalto University, Finland, 2013.

[19] A. Klami, S. Virtanen, E. Leppaaho, and S. Kaski, “Group Factor
Analysis,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 26, no. 9, pp. 2136–2147, 2014.
[20] S. Virtanen, A. Klami, S. A. Khan, and S. Kaski, “Bayesian group

factor analysis.” in AISTATS, 2012, pp. 1269–1277.
[21] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for

large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[22] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proceedings of the 26th annual international conference on

machine learning. ACM, 2009, pp. 1049–1056.
[23] J. Kober and J. R. Peters, “Policy search for motor primitives in

robotics,” in Advances in neural information processing systems, 2009,
pp. 849–856.

