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Abstract— To ensure system integrity, robots need to proac-
tively avoid any unwanted physical perturbation that may
cause damage to the underlying hardware. In this paper, we
investigate a machine learning approach that allows robots to
anticipate impending physical perturbations from perceptual
cues. In contrast to other approaches that require knowledge
about sources of perturbation to be encoded before deployment,
our method is based on experiential learning. Robots learn to
associate visual cues with subsequent physical perturbations
and contacts. In turn, these extracted visual cues are then used
to predict potential future perturbations acting on the robot.
To this end, we introduce a novel deep network architecture
which combines multiple sub-networks for dealing with robot
dynamics and perceptual input from the environment. We
present a self-supervised approach for training the system
that does not require any labeling of training data. Extensive
experiments in a human-robot interaction task show that
a robot can learn to predict physical contact by a human
interaction partner without any prior information or labeling.

I. INTRODUCTION

According to Isaac Asimov’s third law of robotics [1],
“a robot must protect its own existence as long as such
protection does not conflict with the First or Second Law”,
i.e., as long as it does not harm a human. Aspects of safety
and self-preservation are tightly coupled to autonomy and
longevity of robotic systems. For robots to explore their
environment and engage in physical contact with objects
and humans, they need to ensure that any such interaction
may not lead to tear, damage, or irreparable harm to the
underlying hardware. Situations that jeopardize the integrity
of the system need to be detected and actively avoided. This
determination can be performed in either a reactive way, e.g.,
by using sensors to identify forces acting on the robot, or
in a pro-active way, e.g., by detecting impending collisions.
In recent years, a plethora of safety methods have been
proposed that are based on reactive strategy. Approaches
for compliant control and, in particular, impedance control
techniques have been shown to enable safe human-robot
interaction [2] in a variety of close-contact tasks. Such
methods are typically referred to as post-contact approaches,
since they react to forces exchanged between the system and
its environment after they first occur.

In many application domains, however, robots need to pro-
actively reason about impending damage before it occurs.
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Fig. 1: Baxter robot anticipates physical contact by human.

Methods that tackle these scenarios, have mostly focused on
proximity detection and collision avoidance. Motion tracking
or other sensing devices are used to identify nearby humans
and obstacles in order determine whether they intersect the
robot’s path. To this end, a human expert has to reason
about the expected obstacles before deployment and, in turn,
hand-code methods for object recognition, human tracking,
or collision detection. Such methods are largely based on
the status quo of the environment and do not take in account
the expected future states. For example, the behavior of a
human interaction partner may already provide cues whether
or not physical contact is to be expected. In addition, such
methods suffer from limited adaptivity – the robotic system
is not able to incorporate other or new sources of physical
perturbations that have not been considered by the human
expert. Changes in the application domain typically require
the expert to specify the set of obstacles/perturbants and how
they can be identified from sensor data. However, for robots
to autonomously explore new goals, tasks, and environments
they cannot be constantly relying on human intervention
and involvement. In order to increase resilience of robotic
systems, the processes responsible for ensuring safety should
inherently be (a) adaptive to changes that occur during the
cycle of operation and (b) anticipative in nature, so as to
proactively avoid damage.

In biology such processes are common place: humans and
animals experience pain as the guiding signal which ensures
self-preservation and safe, “open ended” exploration of the
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Fig. 2: Architecture of the Deep Predictive Model for perturbations.

world. Over time, biological creatures learn to anticipate
impending pain sensations from environmental and propri-
oceptive cues, e.g., from the velocity and direction of an
obstacle, or an imbalance in posture. Repeated exposure to
a sensory cue (e.g. a specific image or object) preceding a
negative outcome (e.g. electric shock) will turn the cue into a
conditioned stimulus that helps anticipate the shock in future
trials. This ability to associate a certain stimuli with negative
future sensations is considered to be essential to survival.

Inspired by the relationship between pain and learning in
biological creatures, we propose in this paper a new method
for learning to anticipate physical perturbations in robotic
systems. Robot safety is realized through an adaptive process
in which prior experiences are used to predict impending
harm to the system. These predictions are based on (1)
environmental cues, e.g., camera input, (2) proprioceptive
information, and (3) the intended actions of the robot. We
introduce a deep predictive model (DPM) that leverages all
three sources of information in order to anticipate contact
and physical perturbations in a window of future time steps.

We will evaluate the introduced system in a set of
experiments in which a robot has to anticipate physical
perturbations caused by a human interaction partner. We
will show that the introduced model effectively anticipates
contact using either RGB or RGB-D camera sensors. While
the introduced method can be used to actively avoid noxious
states, we will focus our analysis in this paper to the detection
of perturbations only.

II. RELATED WORK

Safety plays a critical role in the field of robotics. Recently,
various methods have been put forward in order to protect a
human interaction partner from harm. The work in [3], for
example, uses proprioceptive sensing to identify collisions
and, in turn, execute a reactive control strategy that enables

the robot to retract from the location of impact. In a similar
vein, the work in [4] describes methods for rapid collision
detection and response through trajectory scaling. Many ap-
proaches to safe human-robot interaction are based on rapid
sensing through force-torque sensors or tactile sensors [5].
Another approach is to generate estimates of external forces
acting on a robot using disturbance observers [6]. These ap-
proaches, however, require a model of the underlying plant,
which in the case of complex humanoid robots can become
challenging to derive. In addition, nonlinearities underlying
the current robot or task can often lead to instabilities
in the system [7]. To circumvent such challenges, several
approaches have been proposed for learning perturbation
filters using a data-driven machine learning method [8], [9],
[10]. An alternative, bio-inspired approach was proposed in
[11]. In particular, an “Artificial Robot Nervous System” was
introduced which emulates the human skin structure, as well
as the spikes generated whenever an impact occurs.

All of the above techniques are reactive in nature. Only af-
ter contact with its environment, can a robot detect a physical
impact or perturbation and react to it. However, many critical
situations require a proactive avoidance strategy. To this
end, various methods for human motion anticipation have
been proposed [12], [13], [14]. Given a partially observed
human motion, a robot can anticipate the goal location and
intermediate path and accordingly generate a collision free
navigation strategy. However, such approaches are brittle in
that they require some form of human tracking. If the source
of the perturbation is non-human, e.g., a moving object then
no anticipation can occur. In this paper, we are interested in
dynamic approaches to anticipation of perturbations. Robots
learn to predict contacts or impact by associating them with
visual cues. This is similar in spirit to [15] where dashcam
videos were used to predict car collisions. However, an



important difference is that our predictions are based on both
visual cues, proprioceptive sensors, as well as next robot
actions.

III. DEEP PREDICTIVE MODELS OF PHYSICAL
PERTURBATIONS

Our goal is to enable an intelligent system to anticipate
undesired external perturbations before they occur. Following
the biological inspiration, repeated exposure to a sensory cue
preceding a physical perturbation will turn the cue into a
predictive variable that helps anticipate the perturbation. To
this end, we propose the deep predictive model seen in Fig. 2.

The first module of the DPM is a deep dynamics module
that learns to discriminate between external perturbations
caused by outside events and natural variations of sensor
readings due to the currently executed behavior and sensor
noise. The deep dynamics module is trained to generate a sig-
nal, whenever the recorded sensor values cannot be explained
by the actions of the robot. This produces a dense training
signal for self-supervised learning of external perturbations.
Prediction in the deep dynamics model is performed within
a probabilistic framework in order to estimate the model
uncertainties.

The second module of the DPM is the perceptual antici-
pation module– a deep network that takes visual percepts,
proprioceptive states, and intended actions as input and
generates predictions over future noxious signals. It learns to
associate specific visual and proprioceptive cues to harmful
states. The perceptual anticipation module contains convolu-
tional recurrent layers [16], [17] that process the visual input
in both space and time. In addition, it features recurrent and
dense layers, that combine the processed visual information
with information about the robot state and actions to produce
multiple predictions over expected perturbations. Learning
is performed using the paradigm of self-supervised learning.
More specifically, the training signal produced by the deep
dynamics module is used as a target signal. No human
intervention is need in order to either provide new training
data or label existing data.

A. Deep Dynamics Model

The task of the deep dynamics model is to identify exoge-
nous perturbations affecting the robot. Detecting such per-
turbations in the sensor stream can be challenging when the
robot is performing dynamic movements that by themselves
cause fluctuation in the sensor readings. To discriminate
between exogenous and endogenous perturbations, we will
use a strategy inspired by the human motor system.

Before sending an action at ∈ RQ to the actuators, the
robot creates a copy of at, the so-called efference copy,
and predicts the expected sensory stimuli after execution.
This prediction is performed by the deep dynamics model,
a neural network that maps the current state st and intended
action at onto the expected next state s∗t+1.

After executing action at, we can measure the discrepancy
between the expected sensations and the measured sensor

values, also called the reafference. The degree of discrepancy
is an indicator for external physical perturbations.

This methodology is related to the concept of disturbance
observers [6]. However, in contrast to disturbance observers,
no explicit model of the system needs to be provided. Instead,
the deep dynamics model is entirely learned, which is
particularly important for compliant and cable-driven robots,
for which analytical models can often be hard to devise and
difficult to calibrate.
Data Collection: Without loss of generality, we define
for the remainder of the paper the system state to be
st = [θt, θ̇t, θ̈t,pt]

T ∈ RP which includes joint angles θt,
joint velocities θ̇t, accelerations θ̈t and end-effector pose pt.

To collect training data for training the deep dynamics
model, we use motor babbling [18], [19]. To this end, small
changes are applied to the the control action at ∈ RQ, where
Q is the number of degrees of freedom for the robot, i.e.,
the number of joints. Considering a naive implementation
of motor babbling, the action can be sampled from an
isotropic Gaussian distribution at ∼ N (0, σ2I) . However,
empirically we have observed that such a naive sampling
approach does not effectively cover the state-action space.

To alleviate this problem, we use a bi-modal distribution
and incorporate a simple momentum term

π ∼ B(0.5)
u ∼ π N (µ1, σ2I) + (1− π) N (−µ1, σ2I)

at = (u+ at−1)/2 (1)

Actions sampled using the above strategy effectively cover
the state-action space and generate trajectories without caus-
ing wear and tear. The result of the motor babbling phase, is a
dataset for training which consists of N triplets (st,at, st+1)
consisting of the current state, current action, and the next
state. The individual matrices storing all states and actions
are denoted by St ∈ RN×P , At ∈ RN×Q and St+1 ∈
RN×P .
Model Learning: The deep dynamics model is an artificial
neural network that maps a state st and action at on to
the expected next state s∗t+1. Training is performed using
Dropout [20] and data collected in the motor babbling
process. A Euclidean loss function is used to identify the
error.

The neural network generates a point estimate for any
set of inputs. However, due to the non-determinism and
noise underlying such tasks, it is important to reason about
uncertainties when making predictions. To this end, we
leverage recent theoretical insights in order to generate
probabilistic predictions from a trained neural network. In
particular, it was shown in [21] that neural network learning
using the Dropout method [20] is equivalent to a Bayesian
approximation of a Gaussian Process modeling the training
data. Following this insight, we generate a set of predictions
{ŝ1,. . . , ŝT } from a trained network through T stochastic
forward passes. The generated predictions form a possibly
complex distribution represented as a population of solutions.
We then extract an approximate parametric form of the
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Fig. 3: Analysis of predictive error functions

underlying distribution through moment matching

E(s∗t+1) ≈
1

T

T∑
i=1

ŝi

Var(s∗t+1) ≈
1

T

T∑
i=1

ŝTi ŝi − E(s∗t+1)
TE(s∗t+1)

Given the above distribution moments we can reason about
the uncertainty underlying the prediction process.
Perturbation as Predictive Error: As described above and
depicted in Fig. 2, we generate in every time step a prediction
of the next sensory state s∗t+1 based on the current state
and action. Consequently, after executing the action at, we
measure the true sensor values of the robot and compare
them to the prediction, i.e., δ = E(s∗t+1)−s∗t+1 . Taking the
norm of vector δ we get an estimate of the discrepancy be-
tween robot expectation and reality. Assuming a reasonably
accurate model, this discrepancy is an estimate of exogenous
perturbations that affected the system dynamics. To correct
for the inherent model uncertainty and the probabilistic na-
ture of the predictions, we can take an exponential according
to ∆ =‖τ‖, with τi = exp

(
δi − 2 Var(s∗t+1)

)
.

Fig. 3 depicts the effect the exponential scaling at confi-
dence bound. The ground-truth highlighted in gray was hand-
labeled using a video stream as reference. We can see both
predictive error functions produce elevated responses during
moments of contact. Yet, by incorporating an exponential
scaling as performed in ∆ we can reduce spurious activations
and false-positives.

B. Perceptual Anticipation Model

In this section, we will describe how experienced perturba-
tions can be correlated to predictive visual cues. In turn, these
visual cues can later be used to anticipate the occurrence
of physical contact. For example, perceiving an approaching
wall may indicate an impending collision. Still, whether or
not an external perturbation will occur is also dependent on
the next actions of the robot, e.g., whether or not the robot
will stop its course. Hence, states and actions need to be
included in the prediction process.

In our approach, a dedicated model – the Perceptual An-
ticipation Model – learns to predict impending perturbations
from a sequence of visual input data, robot actions, and
sensory states. Visual input representing the environment is
given by an R × C grid. Each cell of the grid stores F

measurements, i.e., depth or color channels that may vary
over time. Thus, the visual input corresponds to a tensor
X ∈ RR×C×N .

Training is based on repeated physical interaction with
the enviroment,e.g., a human or static objects. Throughout
this process, a stream of visuals is recorded using either
a traditional RGB camera or an RGB-D depth camera.
The result is a sequence of observations Xt. As the same
time, states st and actions at of the robot are recorded. In
addition, at every time step, the previously introduced deep
dynamics model is run, in order to generate estimates pt of
perturbations currently acting on the robot.

Given the above data sets, the goal of training the Percep-
tual Anticipation Model is to approximate the distribution

P (pt+1, . . . , pt+k |Xt−j , . . . ,Xt,

st−j , . . . , st,

at−j , . . . ,at) (2)

where j defines a window of past time steps. More specif-
ically, we are interested in a predictive model that generates
expected future perturbations pt+1, · · · , pt+k conditioned on
past inputs Xt−j , as well as current and previous robot states
and actions.

The presented task requires both attention to spatial pat-
terns within the visual input, as well as attention to temporal
patterns and behavioral dynamics. Hence, special care has
to be taken to ensure that the model architecture used for
learning can effectively identify and incorporate both sources
of information when making a prediction.
Network Architecture: In order to base all predictions on
both spatial and temporal information, we employ a deep
convolutional recurrent network to learn the anticipation
model. The input of the network is a sequence of visual
data, the robot states, and actions. The output of the network
is a vector p = [pt+1, · · · , pt+k]

T ∈ Rk that describes
the likelihood of a perturbation at each of the time steps
{t+1, · · · , t+k}. In order to incorporate temporal dynamics,
recurrent units are used according to either the Long Short
Term Memory (LSTM) [22] model or the Gated Recurrent
Units (GRU) [23] model. These recurrent units keep track
of a hidden state. In turn, the next state of the network
is calculated as a function of the hidden state and the
new inputs. In the case of using convLSTM units [24], the
network output is governed by the following set of equations

It = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi)

Jt = tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

Ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf )

Ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo)

Ct = Ft �Ct−1 + It � Jt

Ht = Ot � tanh(Ct)

where Xt is the input at time t, Ct is the memory cell
output, and Ht is the hidden state. Using memory cells is
a critical element of LSTM and ensures a that the network



output is conditioned on previous activations of the network.
The gate variables It, Ft, Ot of the ConvLSTM model
denote 3D tensors whose last two dimensions are spatial
dimensions. σ denotes the sigmoid function, ∗ is convolution
operation and � is Hadamard multiplication. In the case of
using convGRU units [25], the neural network outputs are
defined by equations

Zt = σ(Wxz ∗Xt +Whz ∗Ht−1 + bz)

Rt = σ(Wxr ∗Xt +Whr ∗Ht−1 + br)

Ĥt = Φ(Wx ∗Xt +Wh ∗ (Rt �Ht−1) + b)

Ht = (1− Zt)�Ht−1 + Zt � Ĥt

with inputs X1,. . . ,Xt, cell outputs/hidden states
H1,. . . ,Ht and gates Zt, Rt of ConvGRU are 3D tensors
with 2 dimensions as the spatial dimensions and one
dimension for the convolution filter dimension. The symbol
Φ described the activation function used, e.g., tanh or
Rectified Linear Unit (ReLU) [26]. Note that the equations
governing the convolutional GRU have fewer parameters,
which reduced both training and execution time. Faster
forward passes can be crucial for real-time robotics
application as the one described here.
Loss Function: In order to train all network parameters, we
use a weighted binary crossentropy as a loss function

L = − 1

T

T∑
t=1

(
wpt log(p̂t) + (1− pt)

(
1− log(p̂t)

))
(3)

where w is weight penalty, pt is the ground truth, and p̂t

is the likelihood of perturbation generated by the network.

IV. EXPERIMENTAL RESULTS

We conducted a human-robot interaction study to inves-
tigat the validity of the introduced approach. In all of the
following experiments the prediction rate was 5Hz. The
parameters were set to: P = 28, Q = 7, k = 10, w =
3, j = 9, µ = 0.1, standard deviation for action sampling
σ = 0.05, dimension of environment data: row, col = 64
and channel=1 (gray-scale frame data or depth data).

A. Interaction Dataset

For training the anticipation model, we have created an
interaction dataset involving 10 participants. Each participant
interacted with the robot for about ten minutes. This resulted
in a data set of 3000 data points per person. The participants
were instructed to move towards the robot and touch its arm
at any location. Throughout this process, the arm of the robot
was continously performing a forward-backward movement.

In addition, in 40-50% of the interactions, the participants
were instructed to pretend approaching the robot and then
turning back without any contact. Incoporating such feining
moves on the part of the human interaction partner, as well as
a constant movement of the arm, ensures that the robot has to
constantly monitor the its state and the environment in order
to appropriately update its belief about impending physical
contact. Data recorded from 9 of the participants was used
for training, while 1 participant was used for validation. Data

from a separate set of 3 participants was used as test data to
evaluate the generalization capabilities of the model.

Two different versions of the training set were generated.
First, we created a setup in which depth images were used as
input. In the second setup, we used grayscale video images
as input.

B. Example Interaction

Fig. 4a shows an example interaction between the robot
and a human subject applying forces on its arm. The per-
turbation identified by the Deep Dynamics Model accurately
reflects the moment of contact between the human and the
robot. These perturbations are used to train the anticipation
model, so that in subsequent interactions the robot can
predict the occurence of a perturbation by only observing
the human approaching and lifting his hand.

This process can be seen in Fig. 4b. After training the
perceptual anticipation model, we provide current observa-
tions in form of depth images as input. In turn, the network
generates estimates for the next k time steps which reflect
the likelihood of a future perturbation at t+ k. The moment
of contact is depicted in Fig. 4b by a vertical line. We can
see that the predictions for pt+1, pt+5 and pt+10 are aligned
along a diagonal. The predictor with a larger horizon, i.e.,
looking ten time steps into the future, activates early to
indicate a high likelihood of a contact. The predictors with
a shorter horizon activate at later time steps, based ont the
horizon they have been trained on. Note the attenuation of
the activations, once the robot is outside the envelope for
which the predictors have been trained to fire.

Fig. 4c shows the same process with a perceptual anticipa-
tion model trained on typical grayscale video images. Again,
the predictors fire mostly within the envelope (gray) imposed
by the respective horizons, with pt+10 firing first. However,
the responses are less accentuated when compared with the
activations generated from depth images.

C. Visualizing Network Saliency

To better understand the decision process by which the
perceptual anticipation model generates predictions, we vi-
sualized the underlying saliency using the method introduced
in [27]. Fig. 5 shows an example of saliency maps at different
moments in time during a human-robot interaction. Regions
highlighted in red or yellow correspond to pixels with a
strong influence on the output of the network. Originally,
the network is not focusing on any particular region within
the image. However, as the human subject starts walking
in direction of the robot, the network approximately starts
focusing on pixels around the body of both the human
subject, as well as the right arm of the robot. As the human
comes closer, the saliency scores for each pixel become
larger, as indicated by the yellow coloring. At the onset of
a contact, the saliency scores attenuate.

The latter analysis of saliency, is in line with our expec-
tations of features relevant to the task, i.e., the shape and
location of the human and robot arm. It is important to
note that the activations for this particular predictor (pt+5)
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(a) Detection of physical perturbations using the Deep Dynamics Model. A human subject approaches the robot, pushes the arm, and
moves back. Detected perturbations correspond to the moment of contact and release.
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(b) Likelihoods of perturbation predicted by the Perceptual Anticipation Model after self-supervised training. The different predictors fire
at different moments ahead of the actual physical perturbation (indicated here by a gray envelope).
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(c) Pedictions of the likelihood of physical perturbation generated from a Perceptual Anticipation Model which was trained on grayscale
video input. The predictors fire at different moments ahead of the actual moment of contact.

Fig. 4: Interaction Example showing the data and outputs of the Deep Dynamics Model and Perceptual Anticipation Model

Fig. 5: Saliency map visualization of pt+5 predictor. It anticipates any interaction 1s into the future. The images show,
highlighted in red, the pixels the network is paying attention when generating an output. In the beginning, almost no region
is active, but as the human starts approaching the robot, the network focuses on the human and also on the robot arm. Once
the subject is in contact with the robot, the activations attenuates.



quickly attenuate as the human comes close to the robot.
We noticed that this pattern is dependent on the specific
predictor. Consequently, the saliency maps for the pt+1

attenuate at a later moment, while the saliency maps for
pt+10 attenuate at an earlier moment.

D. Prediction Error on Training and Test Sets

The prediction error on the training set can be seen in
Tab. I. Different models were tested, namely (a) ConvLSTM
vs. ConvGru, (b) state-action conditioned networks versus
convolution only, and (c) depth image vs. frame image.

Config true+ pred+ precision recall MCC
ConvLSTM-SA-D 1907 4607 0.4139 0.6421 0.4953
ConvLSTM-D 2087 5999 0.3479 0.7027 0.4711
ConvGRU-D 1686 4060 0.4153 0.5677 0.4651
ConvGRU-SA-D 1876 5206 0.3604 0.6316 0.4541
ConvGRU-F 2129 6696 0.3180 0.7168 0.4522
ConvGRU-SA-F 2040 6360 0.3208 0.6869 0.4442
ConvLSTM-SA-F 1993 6190 0.3220 0.6710 0.4396
ConvLSTM-F 2127 8039 0.2646 0.7162 0.4060

TABLE I: Comparison between different implementations of
the perceptual anticipation model – 2970 perturbation points
in 9000.

E. Test Error after Model Selection

Given the above results, we selected a state-action con-
ditioned ConvLSTM (ConvLSTM-SA) as the underlying
network model for the prediction. Consequently, we an-
alyzed the predction errors for the generated predictions
pt+1, · · · , pt+k separately. Tab. II and Tab. III show the
results of this analysis for depth data and frame data respec-
tively. In both cases precision, recall and MCC (Matthews
correlation coefficient) deteriorate, as the network produces
predictions for longer horizons. However, using depth input
generates significantly better results for short horizon predic-
tors.

pred no true+ pred+ precision recall MCC
pt+1 239 526 0.4544 0.8047 0.5877
pt+2 227 487 0.4661 0.7643 0.5799
pt+3 233 522 0.4464 0.7845 0.5742
pt+4 224 531 0.4218 0.7542 0.5451
pt+5 215 481 0.4470 0.7239 0.5507
pt+6 192 424 0.4528 0.6465 0.5226
pt+7 212 576 0.3681 0.7138 0.4905
pt+8 166 443 0.3747 0.5589 0.4352
pt+9 187 647 0.2890 0.6296 0.3989
pt+10 194 790 0.2456 0.6532 0.3691
ALL 1907 4607 0.4139 0.6421 0.4953

TABLE II: ConvLSTM-SA Depth test (297 perturbation
points in 9000)

The above tables show a relatively low precision on the
test set. To investigate this phenomenon, we visualized the
ground truth versus the generated predictions by the network.
An exerpt of this can be seen in Fig. 6. The figure shows
the network activations for two different subjects over time.
The black marks indicate the moments of contact, i.e., the

pred no true+ pred+ precision recall MCC
pt+1 202 492 0.4106 0.6801 0.5083
pt+2 208 539 0.3859 0.7003 0.4986
pt+3 203 530 0.3830 0.6835 0.4901
pt+4 196 516 0.3798 0.6599 0.4788
pt+5 182 486 0.3745 0.6128 0.4567
pt+6 193 545 0.3541 0.6498 0.4564
pt+7 209 641 0.3261 0.7037 0.4543
pt+8 171 493 0.3469 0.5758 0.4230
pt+9 174 535 0.3252 0.5859 0.4113
pt+10 185 755 0.2450 0.6229 0.3592
ALL 1993 6190 0.3220 0.6710 0.4396

TABLE III: ConvLSTM-SA Frame test (297/9000)

ground truth (GT). The ten plots in red underneath the ground
truth indicate the output predictions of the network. We can
see that in the majority of cases the network performs the
right classification. We can also see that the activations are
aligned along a diagonal, since their outputs fire for different
horizons. In some cases (Subject 2, time step 18) the earlier
predictors start to fire but immediately cease thereafter. An
analysis of the video showed that these cases correspond
to the feigning moves the subjects were asked to perform
from time to time. This shows that the network performs
according to our expectations: the early predictors fire, while
the late predictors are awaiting more evidence. Hence, the
low accuracy is mostly caused by the network sometimes
firing slghtly ahead of time.

To get a better estimate of the overall prediction accuracy
we performed another evaluation in which we counted the
number of times all ten predictors activate ahead of a ground
truth activation for different participants, see Fig. 7. We
can see that the networks performed well for a two out of
three subjects, i.e., accuracy of 90% using depth images. For
participant P3, accuracies dropped to about 75% (depth) and
60% (grayscale frame data).

V. CONCLUSIONS
In this paper, we introduced a novel methodology that

allows robots to associate perceptual cues with impending
physical impact to the body. By learning a mapping between
observed visual features and future perturbations, robots can
anticipate upcoming hazardous or unwanted states. To this
end, we introduced a complex neural network model that
combines spatial, temporal, and probabilistic reasoning in
order to generate predictions over a horizon of next time
steps. The network learns to focus on visual features that
are most indicative of future exogenous perturbations.

For future work, we aim at extending the framework, such
that the predictions can be conditioned on entire control
policies of the robot and not only a single next action.
Furthermore, we will incorporate prediction framework into
reinforcement learning, in order to also autonomously learn
preventive motions for avoiding perturbations.
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Fig. 6: Visualization of the ground truth timing (black) of a physical perturbation and the activations (red) of the anticipation
model for two test subjects.
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