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MOTIVATION
Most robotic systems have a high number
of degree-of-freedom, while most tasks in
robotics are intrinsically low dimensional, for
example,

• grasping
• walking
• human arm movements

Hence, we want to

exploit the low dimensional nature of the
tasks

and, furthermore,

use prior structural knowledge

to learn movements in an efficient and mean-
ingful way.
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VARIATIONAL INFERENCE
By following a Variational Bayes approach on a lower bound we can derive the following for-
mula for the estimation of the approximated q-distributions.

log qj(θj) = const+

∫
θ−j

∏
i6=j

qi(θi)

∫
pold(τ) log

T∏
t=1

π(at,θ|st)
p(r = 1|τ)

R̂
dτdθ−j . (1)

GROUP FACTOR POLICY SEARCH
The model equation for the actions (of a robot) is
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The probabilistic policy is given by
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The prior of the transformation matrix incorporating structural information and sparsity is
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The distributions of other parameters are either normal or gamma distributions with
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,

αm,k ∼ G (aα, bα) , τ̃m ∼ G
(
aτ̃ , bτ̃

)
.

COMPARISON - MOVEMENT OF TWO SIM. ROBOT ARMS
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CONCLUSION
We derived a novel reinforcement learning
algorithm that integrates dimensionality re-
duction and policy search by using sparse
structural prior distributions.
Resulting factors of the latent space model
specific behaviour of (joint) groups in robot
arms.

ALGORITHM

Input: Reward function R (·) and
choose number of latent
dimension n. Set fixed
hyper-parameters aτ̃ , bτ̃ , aα, bα,
σ2 and define groupings.

while reward not converged do
for h=1:H do # Sample H rollouts

for t=1:T do
at = WiZφ+Mφ+Eφ
with Z ∼ N (0, I) and
E ∼ N (0, τ̃ ), where
τ̃ (m) = τ̃mI
Execute action at

Observe and store reward R (τ)

Initialization of q-distribution
while not converged do

Update q (M)
Update q (W)

Update q
(
Z̃
)

Update q (α)
Update q (τ̃ )

M = Eq(M) [M]
W = Eq(W) [W]
α = Eq(α) [α]
τ̃ = Eq(τ̃ ) [τ̃ ]

Result: Linear weights M for the
feature vector φ, representing
the final policy. The columns of
W represents the factors of the
latent space.
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